精英家教网 > 高中数学 > 题目详情
8.某校高三年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数.
(Ⅰ)请列出X的分布列并求数学期望;
(Ⅱ)根据所列的分布列求选出的4人中至少有3名男生的概率.

分析 (Ⅰ)依题意得,随机变量X服从超几何分布,随机变量X表示其中男生的人数,X可能取得值为0,1,2,3,4,即可列出X的分布列并求数学期望;
(Ⅱ)由分布列可知至少选3名男生的概率.

解答 解:(Ⅰ)依题意得,随机变量X服从超几何分布,
随机变量X表示其中男生的人数,X可能取得值为0,1,2,3,4,$P(X=k)=\frac{{C_6^k•C_4^{4-k}}}{{C_{10}^4}}$,k=0,1,2,3,4.
∴X的分布列为:

X01234
P$\frac{1}{210}$$\frac{4}{35}$$\frac{3}{7}$$\frac{8}{21}$$\frac{1}{14}$
(Ⅱ)由分布列可知至少选3名男生,
即$P(X≥3)=P(X=3)+P(X=4)=\frac{8}{21}+\frac{1}{14}=\frac{19}{42}$.

点评 本题考查概率的计算,考查分布列考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.现从甲、乙两个品牌共9个不同的空气净化器中选出3个分别测试A、B、C三项指标,若取出的3个空气净化器中既有甲品牌又有乙品牌的概率为$\frac{5}{6}$,那么9个空气净化器中甲、乙品牌个数分布可能是(  )
A.甲品牌1个,乙品牌8个B.甲品牌2个,乙品牌7个
C.甲品牌3个,乙品牌6个D.甲品牌4个,乙品牌5个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.过点P(-1,2),圆心在直线x-y+2=0上,且与直线2x+y=0相切的圆的方程为(x-1)2+(y-3)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线y=x+3与抛物线x2=4y所围成的封闭图形的面积等于$\frac{64}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=aex-$\frac{1}{2}$x2-x(a∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+(e-2)y-1=0垂直,求f(x)的单调区间;
(2)若函数f(x)有两个极值点,求实数a的取值范围;
(3)证明:当x>1时,exlnx>x$-\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正方体ABCD-A′B′C′D′中,M,N分别是DD′,AD的中点,求异面直线MM与BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(1+i)2014+(1-i)2014的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.(x+$\frac{1}{x}$-2)3展开式中的常数项为(  )
A.-8B.-12C.-20D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{2}{3}$x3-$\frac{3}{2}$x2+logax,(a>0且a≠1)为定义域上的增函数,f'(x)是函数f(x)的导数,且f'(x)的最小值小于等于0.
(Ⅰ)求a的值;
(Ⅱ)设函数$g(x)=f(x)-\frac{2}{3}{x^3}-4lnx+6x$,且g(x1)+g(x2)=0,求证:${x_1}+{x_2}≥2+\sqrt{6}$.

查看答案和解析>>

同步练习册答案