精英家教网 > 高中数学 > 题目详情
14.双曲线$\frac{x^2}{3}-\frac{y^2}{6}=1$的渐近线方程是y=±$\sqrt{2}$x,离心率是$\sqrt{3}$.

分析 根据题意,由双曲线的方程可得a、b,计算可得c的值,进而有双曲线的渐近线、离心率公式计算可得答案.

解答 解:根据题意,双曲线的方程为$\frac{x^2}{3}-\frac{y^2}{6}=1$,
其中a=$\sqrt{3}$,b=$\sqrt{6}$,则c=$\sqrt{6+3}$=3,
又由其焦点在x轴上,则其渐近线方程为:y=±$\sqrt{2}$x,
其离心率e=$\frac{c}{a}$=$\frac{3}{\sqrt{3}}$=$\sqrt{3}$;
故答案为:y=±$\sqrt{2}$x,$\sqrt{3}$.

点评 本题考查双曲线的标准方程,关键要熟悉双曲线标准方程的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.S(A)表示集合A中所有元素的和,且A⊆{1,2,3,4,5},若S(A)能被3整除,则符合条件的非空集合A的个数是(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=sinx-xcosx(x≥0).
(1)求函数f(x)的图象在($\frac{π}{2}$,1)处的切线方程;
(2)若a≥$\frac{1}{3}$,则?x∈[0,$\frac{π}{2}$],不等式f(x)≤ax3是否恒成立?并说明你的理由.
(3)若m=${∫}_{0}^{\frac{π}{2}}$f(x)dx,g(x)=$\frac{6m}{(4-π){x}^{2}}$f(x),证明:[1+g($\frac{1}{3}$)][1+g($\frac{1}{{3}^{2}}$)][1+g($\frac{1}{{3}^{3}}$)]…[1+g($\frac{1}{{3}^{n}}$)]<$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.关于x的方程$({k-7}){x^2}+4lnx-\frac{1}{x^2}+k=0$有两个不等实根,则实数k的取值范围是(4,7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.公差不为零的等差数列{an}的前n项和为Sn.若a4是a3与a7的等比中项,S8=16,则S10等于(  )
A.18B.24C.30D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.
(Ⅰ)求a的值;
(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;
(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取3人,用X表示身高在180cm以上的男生人数,求随机变量X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$与抛物线y2=8x有一个公共的焦点F.设这两曲线的一个交点为P,若|PF|=5,则点P的横坐标是3;该双曲线的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.企业需为员工缴纳社会保险,缴费标准是根据职工本人上一年度月平均工资(单位:元)的8%缴纳,某企业员工甲在2010年至2016年各年中每月所缴纳的养老保险数额y(单位:元)与年份序号t的统计如表:
 年份 20102011 2012 2013 2014 2015 2016 
 t 1 2 3 4 5 6 7
 y 270 330 390 450 490 540 610
(1)求y关于t的线性回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$;
(2)按照这种变化趋势,利用(1)中回归方程,预测2017年该员工每月的平均工资(精确到0.1).
参考公式和数据:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i=1}^{7}$tiyi=13860,$\sum_{i=1}^{7}$ti2=140.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥S-ABCD中,四边形ABCD是菱形,∠BAD=60°,AC交BC于点O,△SBD是边长为2的正三角形,SA=$\sqrt{3}$,E,F分别是CD,SB的中点.
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)求证:BD⊥平面SAC;
(Ⅲ)求直线AB与平面SBD所成角的正弦值.

查看答案和解析>>

同步练习册答案