精英家教网 > 高中数学 > 题目详情
2.关于x的方程$({k-7}){x^2}+4lnx-\frac{1}{x^2}+k=0$有两个不等实根,则实数k的取值范围是(4,7).

分析 分离参数k=$\frac{7{x}^{2}+\frac{1}{{x}^{2}}-4lnx}{{x}^{2}+1}$,求出右侧函数的单调性和最值或极限,从而得出k的范围.

解答 解:∵$({k-7}){x^2}+4lnx-\frac{1}{x^2}+k=0$有两解,
∴k=$\frac{7{x}^{2}+\frac{1}{{x}^{2}}-4lnx}{{x}^{2}+1}$有两解,
令f(x)=$\frac{7{x}^{2}+\frac{1}{{x}^{2}}-4lnx}{{x}^{2}+1}$,则f′(x)=$\frac{8xlnx+10x-\frac{8}{x}-\frac{2}{{x}^{3}}}{({x}^{2}+1)^{2}}$,
∴当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,
∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
∴当x=1时,f(x)取得最小值f(1)=4,
又x→0时,f(x)→+∞,x→+∞时,f(x)→7,
∴4<k<7.
故答案为(4,7).

点评 本题考查了方程根的个数与函数单调性的关系,函数最值的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{lnx}{x}$
(1)求函数f(x)的极值;
(2)当0<x<e时,证明:f(e+x)>f(e-x);
(3)设函数f(x)的图象与直线y=m的两个交点分别为A(x1,y1),B(x2,y2),AB的中点的横坐标为x0,证明:f'(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=Asin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的部分图象如图所示,将函数f(x)的图象向右平移$\frac{7π}{24}$个单位后得到函数g(x)的图象,若函数g(x)在区间$[{-\frac{π}{3},θ}]$($θ>-\frac{π}{3}$)上的值域为[-1,2],则θ等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(x2-$\frac{2}{x}$+y)5的展开式中,含x3y2的项的系数为(  )
A.60B.-60C.80D.-80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=lnx+$\frac{1}{x}-\frac{1}{2}$,g(x)=ex-$\frac{1}{2}{x^2}-ax-\frac{1}{2}{a^2}$(e是自然对数的底数,a∈R).
(Ⅰ)求证:|f(x)|≥-(x-1)2+$\frac{1}{2}$;
(Ⅱ)已知[x]表示不超过x的最大整数,如[1.9]=1,[-2.1]=-3,若对任意x1≥0,都存在x2>0,使得g(x1)≥[f(x2)]成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-9≤0},B={x|y=ln(-x2+x+12)},则A∩B=(  )
A.{x|-3≤x<3}B.{x|-2<x≤0}C.{x|-2<x<0}D.{x|x<0或x>2且x≠3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线$\frac{x^2}{3}-\frac{y^2}{6}=1$的渐近线方程是y=±$\sqrt{2}$x,离心率是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60°,则|OA|=$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U={0,1,2,3,4},A={1,3},B={0,1,4},则(∁UA)∩B=(  )
A.{0,1,2,4}B.{2,3}C.{2,4}D.{0,4}

查看答案和解析>>

同步练习册答案