精英家教网 > 高中数学 > 题目详情
12.已知全集U={0,1,2,3,4},A={1,3},B={0,1,4},则(∁UA)∩B=(  )
A.{0,1,2,4}B.{2,3}C.{2,4}D.{0,4}

分析 先求出CUA,再求(CUA)∩B.

解答 解:∵U={0,1,2,3,4},A={1,3},
∴CUA={0,2,4},
∵B={0,1,4},
∴(CUA)∩B={0,4}.
故选D.

点评 本题考查集合的性质和运算,解题时要注意运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.关于x的方程$({k-7}){x^2}+4lnx-\frac{1}{x^2}+k=0$有两个不等实根,则实数k的取值范围是(4,7).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.企业需为员工缴纳社会保险,缴费标准是根据职工本人上一年度月平均工资(单位:元)的8%缴纳,某企业员工甲在2010年至2016年各年中每月所缴纳的养老保险数额y(单位:元)与年份序号t的统计如表:
 年份 20102011 2012 2013 2014 2015 2016 
 t 1 2 3 4 5 6 7
 y 270 330 390 450 490 540 610
(1)求y关于t的线性回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$;
(2)按照这种变化趋势,利用(1)中回归方程,预测2017年该员工每月的平均工资(精确到0.1).
参考公式和数据:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i=1}^{7}$tiyi=13860,$\sum_{i=1}^{7}$ti2=140.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若${(x-\frac{1}{x})}^{n}$的展开式中只有第7项的二项式系数最大,则展开式中含x2项的系数是(  )
A.-462B.462C.792D.-792

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点P($\sqrt{3}$,$\frac{1}{2}$)在椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,F为右焦点,PF垂直于x轴,A,B,C,D为椭圆上四个动点,且AC,BD交于原点O.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A(x1,y1),B(x2,y2),满足$\frac{{{y}_{1}y}_{2}}{\overrightarrow{OA}•\overrightarrow{OB}}$=$\frac{1}{5}$,判断kAB+kBC的值是否为定值,若是,求出此定值,并求出四边形ABCD面积的最大值,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\frac{lnx}{x}$,f′(x)为f(x)的导函数,则f′(1)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥S-ABCD中,四边形ABCD是菱形,∠BAD=60°,AC交BC于点O,△SBD是边长为2的正三角形,SA=$\sqrt{3}$,E,F分别是CD,SB的中点.
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)求证:BD⊥平面SAC;
(Ⅲ)求直线AB与平面SBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥A-BCD中,顶点A在底面BCD上的射影O在棱BD上,AB=AD=$\sqrt{2}$,BC=BD=2,∠CBD=90°,E为CD的中点.
(Ⅰ)求证:AD⊥平面ABC;
(Ⅱ)求直线AC与平面ABE所成角的正弦值;
(Ⅲ)求二面角B-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,已知矩形OABC中,OA=2,OC=1,OD=3,若P在△BCD中(包括边界),且$\overrightarrow{OP}$=α$\overrightarrow{OC}$+$\frac{1}{2}$β$\overrightarrow{OA}$,则α+$\frac{3}{2}$β的最大值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{9}{2}$D.3

查看答案和解析>>

同步练习册答案