精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{-2x+2}{2x-1}$,数列{an}的通项公式为${a_n}=f(\frac{n}{2017})(n∈{N^*})$,则此数列前2017项的和为-2016.

分析 函数f(x)=$\frac{-2x+2}{2x-1}$=$\frac{1}{2x-1}$-1,可得f(x)+f(1-x)=-2,f(1)=0.根据${a_n}=f(\frac{n}{2017})(n∈{N^*})$,可得此数列前2017项的和=(a1+a2016)+(a2+a2015)+…+a2017

解答 解:∵函数f(x)=$\frac{-2x+2}{2x-1}$=$\frac{1}{2x-1}$-1,
∴f(x)+f(1-x)=$\frac{1}{2x-1}$-1+$\frac{1}{2(1-x)-1}$-1=-2,f(1)=0.
${a_n}=f(\frac{n}{2017})(n∈{N^*})$,
则此数列前2017项的和=(a1+a2016)+(a2+a2015)+…+a2017
=-2×1008+0
=-2016.
故答案为:-2016.

点评 本题考查了函数性质、数列求和、分组求和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积为“三斜公式”,设△ABC三个内角A,B,C所对的边分别为a,b,c,面积为S,则“三斜求积”公式为:S=$\sqrt{\frac{1}{4}[{a}^{2}{c}^{2}-(\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2})]}$,若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC的面积为(  )
A.$\sqrt{3}$B.2C.3D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆W:$\frac{x^2}{4}+\frac{y^2}{b^2}=1$(b>0)的一个焦点坐标为$(\sqrt{3},0)$.
(Ⅰ)求椭圆W的方程和离心率;
(Ⅱ)若椭圆W与y轴交于A,B两点(A点在B点的上方),M是椭圆上异于A,B的任意一点,过点M作MN⊥y轴于N,E为线段MN的中点,直线AE与直线y=-1交于点C,G为线段BC的中点,O为坐标原点.求∠OEG的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.
 x(个) 2 3 4 5 6
 y(百万元) 2.5 3 4 4.5 6
(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程y=$\widehatbx+a$;
(Ⅱ)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y-0.05x2-1.4,请结合(Ⅰ)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
参考公式:$\widehat{y}$=$\widehat{b}$x+a,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{\;}({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的函数f(x)=2|x-m|+1(m∈R)为偶函数.记a=f(log22),b=f(log24),c=f(2m),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某超市对某月(30天)每天顾客使用信用卡购物的人数进行了统计,得到如图所示的样本茎叶图,则该样本的中位数、众数、极差分别是(  )
A.44,45,56B.44,43,56C.44,43,57D.45,43,57

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知k∈Z,关于x的不等式k(x+1)>$\frac{2x}{e^x}$在(0,+∞)上恒成立,则k的最小值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设点P(x,y)在不等式组$\left\{\begin{array}{l}x≥1\\ 2x-y≤0\\ x+y-6≤0\end{array}\right.$所表示的平面区域内,则$z=\frac{9xy}{{9{x^2}+{y^2}}}$的取值范围为(  )
A.$[{\frac{18}{13},\frac{3}{2}}]$B.$[{\frac{45}{34},\frac{3}{2}}]$C.$[{\frac{45}{34},\frac{18}{13}}]$D.$[{\frac{18}{13},\frac{45}{34}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{1-i}{3+4i}$(其中i是虚数单位)在复平面内对应的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案