精英家教网 > 高中数学 > 题目详情
4.如图所示的几何体是由棱台ABC-A1B1C1和棱锥D-AA1C1C拼接而成的组合体,其底面四边形ABCD是边长为2的菱形,且∠BAD=60°,BB1⊥平面ABCD,BB1=2A1B1=2.(${V_{棱台}}=\frac{1}{3}h({{S_上}+{S_下}+\sqrt{{S_上}{S_下}}})$)
(Ⅰ)求证:平面AB1C⊥平面BB1D;
(Ⅱ)求该组合体的体积.

分析 (Ⅰ)只需证明BB1⊥AC,BD⊥AC,即可得AC⊥平面BB1D,平面AB1C⊥平面BB1D…(4分)
(Ⅱ)求出${V_{{A_1}{B_1}{C_1}-ABC}}=\frac{1}{3}×2×(\frac{{\sqrt{3}}}{4}+\sqrt{3}+\sqrt{\frac{{\sqrt{3}}}{4}×\sqrt{3}})$=$\frac{{7\sqrt{3}}}{6}$,${V_{D-{A_1}AC{C_1}}}=\sqrt{3}$,即可得组合体体积为$V={V_{{A_1}{B_1}{C_1}-ABC}}+{V_{D-{A_1}AC{C_1}}}=\frac{{13\sqrt{3}}}{6}$

解答 解:(Ⅰ)∵BB1⊥平面ABCD∴BB1⊥AC
在菱形ABCD中,BD⊥AC
又BD∩BB1=B,∴AC⊥平面BB1D…(2分)
∵AC?平面AB1C,∴平面AB1C⊥平面BB1D…(4分)
(Ⅱ)${S_{△ABC}}=\frac{1}{2}×2×2×sin120°=\sqrt{3}$,则${S_{△{A_1}{B_1}{C_1}}}=\frac{{\sqrt{3}}}{4}$…(6分)
∴${V_{{A_1}{B_1}{C_1}-ABC}}=\frac{1}{3}×2×(\frac{{\sqrt{3}}}{4}+\sqrt{3}+\sqrt{\frac{{\sqrt{3}}}{4}×\sqrt{3}})$=$\frac{{7\sqrt{3}}}{6}$…(8分)
${V_{D-{A_1}AC{C_1}}}=\frac{3}{2}{V_{{A_1}-ACD}}$,
由${V_{{A_1}-ACD}}=\frac{1}{3}×{S_{△ACD}}×2=\frac{{2\sqrt{3}}}{3}$知,${V_{D-{A_1}AC{C_1}}}=\sqrt{3}$…(10分)
故组合体体积为$V={V_{{A_1}{B_1}{C_1}-ABC}}+{V_{D-{A_1}AC{C_1}}}=\frac{{13\sqrt{3}}}{6}$…(12分)

点评 本题考查了面面垂直的判定,组合体的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知F1、F2是椭圆C1与双曲线C2的公共焦点,点P是C1与C2的公共点,若椭圆C1的离心率e1∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$],∠F1PF2=$\frac{π}{2}$,则双曲线C2的离心率e2的最小值为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知m∈R,若点M(x,y)为直线l1:my=-x和l2:mx=y+m-3的交点,l1和l2分别过定点A和B,则|MA|•|MB|的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=ax2+bx+c(a>b>c),且f(1)=0,若函数f(x)的导函数图象与函数f(x)的图象交于A,B两点,C,D是点A,B在x轴上的投影,则线段|CD|长的取值范围为($\sqrt{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>0,b>0,c>0函数f(x)=|x+a|+|x-b|+c.
(1)当a=b=c=1时,求不等式f(x)>5的解集;
(2)若f(x)的最小值为5时,求a+b+c的值,并求$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.中心在原点的椭圆C1与双曲线C2具有相同的焦点,F1(-c,0),F2(c,0),P为C1与C2在第一象限的交点,|PF1|=|F1F2|且|PF2|=5,若椭圆C1的离心率${e_1}∈({\frac{3}{5},\frac{2}{3}})$,则双曲线的离心率e2的范围是(  )
A.$({\frac{3}{2},\frac{5}{3}})$B.$({\frac{5}{3},2})$C.(2,3)D.$({\frac{3}{2},3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=2x+y的最小值为1,则a=(  )
A.1B.$\frac{3}{5}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{x}{{e}^{x}}$.
(Ⅰ)若方程f(x)=m有两个不等实根,试求实数m的取值范围;
(Ⅱ)若f(x1)=f(x2)且x1<x2,求证:2x1+3x2>5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,角A,B,C所对的边分别为a,b,c,且bcosC=(3a-c)cosB.D为AC边的中点,且BD=1,则△ABD面积的最大值为$\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

同步练习册答案