分析 (Ⅰ)求出g(x)=a-|x-2|取最大值为a,f(x)的最小值4,利用关于x的不等式f(x)<g(x)有解,求实数a的取值范围;
(Ⅱ)若关于x的不等式f(x)<g(x)的解集为$(b,\frac{7}{2})$,代入相应函数,求出a,b,即可求a+b的值.
解答 解:(Ⅰ)当x=2时,g(x)=a-|x-2|取最大值为a,
∵f(x)=|x+1|+|x-3|≥4,当且仅当-1≤x≤3,f(x)取最小值4,
∵关于x的不等式f(x)<g(x)有解,
∴a>4,即实数a的取值范围是(4,+∞).
(Ⅱ)当$x=\frac{7}{2}$时,f(x)=5,
则$g(\frac{7}{2})=-\frac{7}{2}+a+2=5$,解得$a=\frac{13}{2}$,
∴当x<2时,$g(x)=x+\frac{9}{2}$,
令$g(x)=x+\frac{9}{2}=4$,得$x=-\frac{1}{2}$∈(-1,3),
∴$b=-\frac{1}{2}$,则a+b=6.
点评 本题考查绝对值不等式,考查不等式的解法,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com