精英家教网 > 高中数学 > 题目详情
13.某品牌洗衣机专柜在国庆期间举行促销活动,茎叶图1中记录了每天的销售量(单位:台),把这些数据经过如图2所示的程序框图处理后,输出的S=(  )
A.196B.203C.28D.29

分析 由茎叶图可知n=7,模拟程序的运行,依次写出每次循环得到的S,i的值,当i=8时不满足条件i≤7,退出循环,输出S的值为29.

解答 解:由茎叶图可知n=7,
模拟程序的运行,可得
S=0,i=1
满足条件i≤7,执行循环体,S=20,i=2
满足条件i≤7,执行循环体,S=$\frac{20+22}{2}$=21,i=3
满足条件i≤7,执行循环体,S=$\frac{2×21+26}{3}$=$\frac{68}{3}$,i=4
满足条件i≤7,执行循环体,S=$\frac{3×\frac{68}{3}+33}{4}$=$\frac{101}{4}$,i=5
满足条件i≤7,执行循环体,S=$\frac{4×\frac{101}{4}+33}{5}$=$\frac{134}{5}$,i=6
满足条件i≤7,执行循环体,S=$\frac{5×\frac{134}{5}+34}{6}$=$\frac{168}{6}$,i=7
满足条件i≤7,执行循环体,S=$\frac{6×\frac{168}{6}+35}{7}$=29,i=8
不满足条件i≤7,退出循环,输出S的值为29.
故选:D.

点评 本题主要考查了茎叶图及循环结构的程序框图的应用,模拟程序的运行正确得到每次循环时S,i的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.△ABC中,角A,B,C的对边分别为a,b,c,且三角形的面积S=$\frac{\sqrt{3}}{2}$accosB.
(1)求角B的大小;
(2)若a=2$\sqrt{15}$,点D在AB的延长线上,且AD=3,cos∠ADC=$\frac{2}{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系中,已知点A(-1,0),B(1,2),C(3,-1),点P(x,y)为△ABC边界及内部的任意一点,则x+y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设数列{an}的通项公式an=2n-1,数列{bn}满足a1b1+a2b2+a3b3+…+anbn=$\frac{20}{9}$+($\frac{2n}{3}$-$\frac{5}{9}$)×2${\;}^{2n+{2}^{\;}}$,则数列{bn}的通项公式bn=4n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.f(x)=$\sqrt{x}$lnx在点(4,f(4))处的切线方程为(  )
A.(ln2+1)x-2y+4ln2-4=0B.(ln4+1)x-2y+7ln4-1=0
C.(ln4+1)x-2y+8ln2-4=0D.(ln2+1)x+2y+7ln2-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某学校有高一、高二、高三三个年级,已知高一、高二、高三的学生数之比为2:3;5,现从该学校中抽取一个容量为100的样本,从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为$\frac{1}{4}$,则该学校学生的总数为(  )
A.200B.400C.500D.1000

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,D为BC的中点,∠BAD+∠C≥90°.
(Ⅰ)求证:sin2C≤sin2B;
(Ⅱ)若cos∠BAD=-$\frac{1}{4}$,AB=2,AD=3,求AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在锐角△ABC中,内角A,B,C的对边分别是a,b,c,已知$\frac{\sqrt{3}}{3}$sin2C+cos(A+B)=0.
(Ⅰ)求C;
(Ⅱ)若a=4$\sqrt{3}$sinA,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在正项等比数列{an}和正项等差数列{bn}中,已知a1,a2017的等比中项与b1,b2017的等差中项相等,且$\frac{1}{{b}_{1}}$+$\frac{4}{{b}_{2017}}$≤1,当a1009取得最小值时,等差数列{bn}的公差d的取值集合为(  )
A.{d|d≥$\frac{1}{672}$}B.{d|0<d<$\frac{1}{672}$}C.{$\frac{1}{672}$}D.{d|d≥$\frac{3}{2017}$}

查看答案和解析>>

同步练习册答案