精英家教网 > 高中数学 > 题目详情

已知无穷数列中, 、构成首项为2,公差为-2的等差数列,,构成首项为,公比为的等比数列,其中.
(1)当,时,求数列的通项公式;
(2)若对任意的,都有成立.
①当时,求的值;
②记数列的前项和为.判断是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.

(1)数列的通项公式为
(2)①的值为;②详见解析.

解析试题分析:(1)根据数列的定义求出当时数列的通项公式,注意根据的取值利用分段数列的形式表示数列的通项;(2)①先确定是等差数列部分还是等比数列部分中的项,然后根据相应的通项公式以及数列的周期性求出的值;②在(1)的基础上,先将数列的前项和求出,然后利用周期性即可求出,构造,利用定义法求出的最大值,从而确定的最大值,进而可以确定是否存在,使得.
试题解析:(1)当时,由题意得,                  2分
时,由题意得,                    4分
故数列的通项公式为                5分
(2)①因为无解,所以必不在等差数列内,
因为,所以必在等比数列内,且等比数列部分至少有项,
则数列的一个周期至少有项,                           7分
所以第项只可能在数列的第一个周期或第二个周期内,
时,则,得
,则,得
的值为                                 9分
②因为
所以,               12分
,则
因为,所以,即,           14分
时,取最大,最大值为
从而的最大值为,不可能有成立,故不存在满足条件的实数     16分
考点:等差数列和等比数列的通项公式及前项和、数列的周期性、数列的单调性

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设不等式组所表示的平面区域为Dn,记Dn内 的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).
(1) 求证:数列{an}的通项公式是an=3n(n∈N*).
(2) 记数列{an}的前n项和为Sn,且Tn.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,
(1)求的值;
(2)证明:数列是等比数列,并求的通项公式;
(3)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若数列的前项和为,对任意正整数都有,记
(1)求,的值;
(2)求数列的通项公式;
(3)若求证:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和为,数列满足
(1)求的通项公式;
(2)求证:数列为等比数列;
(3)求前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的图象经过坐标原点,其导函数为,数列的前项和为,点均在函数的图像上.
(1)求的解析式;
(2)求数列的通项公式;
(3)设,是数列的前n项和,求使得对所有都成立的最小正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足: 
(I)证明数列为等比数列,并求出数列的通项公式;
(II)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,流程图给出了无穷等差整数列时,输出的时,输出的(其中d为公差)

(I)求数列的通项公式;
(II)是否存在最小的正数m,使得成立?若存在,求出m的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列的前n项和为.已知,且成等比数列,求的通项公式.

查看答案和解析>>

同步练习册答案