已知二次函数的图象经过坐标原点,其导函数为,数列的前项和为,点均在函数的图像上.
(1)求的解析式;
(2)求数列的通项公式;
(3)设,是数列的前n项和,求使得对所有都成立的最小正整数.
(1) (2) (3)10
解析试题分析:(1)利用导函数及待定系数法求解;(2)利用与的关系求通项公式,要注意对进行讨论;(3)数列求和的方法由数列的通项公式决定.常用的方法有:公式求和法、倒序相加法、错位相减法、裂项相消法、分组转化法等。先利用裂项相消法求和,再求其最大值,就得到的取值范围.
试题解析:(1)依题意设二次函数,则. 1分
由于,得: 2分
所以. 3分
(2)由点均在函数的图像上,又,
所以. 4分
当时, 5分
当时, 7分
所以, 8分
(3)由(2)得知= 9分
=, 11分
故=
=. 12分
要使()成立,需要满足≤,13分
即,所以满足要求的最小正整数m为10. 14分
考点:1.导数运算 2.通项公式、前n项和的求法 3.函数(数列)最值的求法
科目:高中数学 来源: 题型:解答题
2013年我国汽车拥有量已超过2亿(目前只有中国和美国超过2亿),为了控制汽车尾气对环境的污染,国家鼓励和补贴购买小排量汽车的消费者,同时在部分地区采取对新车限量上号.某市采取对新车限量上号政策,已知2013年年初汽车拥有量为(=100万辆),第年(2013年为第1年,2014年为第2年,依次类推)年初的拥有量记为,该年的增长量和与的乘积成正比,比例系数为其中=200万.
(1)证明:;
(2)用表示;并说明该市汽车总拥有量是否能控制在200万辆内.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知正项数列的前项和为,是与的等比中项.
(1)求证:数列是等差数列;
(2)若,且,求数列的通项公式;
(3)在(2)的条件下,若,求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列中,,前和
(Ⅰ)求证:数列是等差数列; (Ⅱ)求数列的通项公式;
(Ⅲ)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知无穷数列中,、 、、构成首项为2,公差为-2的等差数列,、、、,构成首项为,公比为的等比数列,其中,.
(1)当,,时,求数列的通项公式;
(2)若对任意的,都有成立.
①当时,求的值;
②记数列的前项和为.判断是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定常数,定义函数,数列满足.
(1)若,求及;
(2)求证:对任意,;
(3)是否存在,使得成等差数列?若存在,求出所有这样的,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com