2013年我国汽车拥有量已超过2亿(目前只有中国和美国超过2亿),为了控制汽车尾气对环境的污染,国家鼓励和补贴购买小排量汽车的消费者,同时在部分地区采取对新车限量上号.某市采取对新车限量上号政策,已知2013年年初汽车拥有量为
(
=100万辆),第
年(2013年为第1年,2014年为第2年,依次类推)年初的拥有量记为
,该年的增长量
和
与
的乘积成正比,比例系数为![]()
其中
=200万.
(1)证明:
;
(2)用
表示
;并说明该市汽车总拥有量是否能控制在200万辆内.
科目:高中数学 来源: 题型:解答题
设不等式组
所表示的平面区域为Dn,记Dn内 的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).
(1) 求证:数列{an}的通项公式是an=3n(n∈N*).
(2) 记数列{an}的前n项和为Sn,且Tn=
.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知各项均为正数的数列{
}满足
-
-2
=0,n∈N﹡,且
是a2,a4的等差中项.
(1)求数列{
}的通项公式;
(2)若
=![]()
,
=b1+b2+…+
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列
满足
,其中
N*.
(Ⅰ)设
,求证:数列
是等差数列,并求出
的通项公式
;
(Ⅱ)设
,数列
的前
项和为
,是否存在正整数
,使得
对于
N*恒成立,若存在,求出
的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数
的图象经过坐标原点,其导函数为
,数列
的前
项和为
,点
均在函数
的图像上.
(1)求
的解析式;
(2)求数列
的通项公式;
(3)设
,
是数列
的前n项和,求使得
对所有
都成立的最小正整数
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com