【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
![]()
(1)根据频数分布表计算苹果的重量在
的频率;
(2)用分层抽样的方法从重量在
和
的苹果中共抽取4个,其中重量在
的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,写出所有可能的结果,并求重量在
和
中各有1个的概率.
【答案】(1)0.4;(2)1;(3)见解析.
【解析】
(1)用苹果的重量在
的频率除以样本容量,即为所求;
(2)根据重量在
的频数所占的比例,求得重量在
的苹果的个数;
(3)用列举法求出所有的基本事件的个数,再求出满足条件的个数,即可得到所求事件的概率.
解:(1)苹果的重量在
的频率为![]()
(2)重量在
的有
(个)
(3)设这4个苹果中重量在
的有1个,记为1,重量在
的有3个,分别记为2,3,4,从中任取两个,可能的情况有:
(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,设任取2 个,重量在
和
中各有1个的事件为A,则事件A包含有(1,2),(1,3),(1,4)共3种,
所以![]()
科目:高中数学 来源: 题型:
【题目】已知
分别为椭圆
右顶点和上顶点,且直线
的斜率为
,右焦点
到直线
的距离为
.
![]()
求椭圆
的方程;
若直线
与椭圆交于
两点,且直线
的斜率之和为1,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是某学生在4月份开始进人冲刺复习至高考前的5次大型联考数学成绩(分);
![]()
(1)请画出上表数据的散点图;
![]()
(2)①请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程;
②若在4月份开始进入冲刺复习前,该生的数学分数最好为116分,并以此作为初始分数,利用上述回归方程预测高考的数学成绩,并以预测高考成绩作为最终成绩,求该生4月份后复习提高率.(复习提高率=
,分数取整数)
附:回归直线的斜率和截距的最小二乘估计公式分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口的水深
(米)是时间
(
,单位:小时)的函数,下面是每天时间与水深的关系表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
经过长期观测,
可近似的看成是函数![]()
(1)根据以上数据,求出
的解析式;
(2)若船舶航行时,水深至少要
米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是( )
![]()
A. 25B. 66C. 91D. 120
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知有6名男医生,4名女医生.
(1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,一个地区去一名教师,共有多少种分派方法?
(2)把10名医生分成两组,每组5人且每组都要有女医生,共有多少种不同的分法?若将这两组医生分派到两地去,又有多少种分派方法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右焦点为
,右顶点为
.已知
,其中
为原点,
为椭圆的离心率.
(1)求椭圆的方程及离心率
的值;
(2)设过点
的直线
与椭圆交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
.若
,且
,求直线
的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com