精英家教网 > 高中数学 > 题目详情

【题目】已知有6名男医生,4名女医生.

(1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,一个地区去一名教师,共有多少种分派方法?

(2)把10名医生分成两组,每组5人且每组都要有女医生,共有多少种不同的分法?若将这两组医生分派到两地去,又有多少种分派方法?

【答案】(1)14400;(2)120,240

【解析】

分析(1)先选3名男医生,两名女医生,有种方法,再到5个不同地区去巡回医疗,有种方法,根据乘法原理可得结论;

(2)把10名医生分成两组.每组5人共有种方法,再减去只有男医生为一组的情况,即可得到答案.

详解(1)共有=14400(种)分派方法.

(2)把10名医生分成两组.每组5人,且每组要有女医生,有=120(种)不同的分法;若将这两组医生分派到两地去,则共有120=240(种)分派方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点P(22),圆Cx2y28y0,过点P的动直线l与圆C交于AB两点,线段AB的中点为MO为坐标原点.

(1)M的轨迹方程;

(2)|OP||OM|时,求l的方程及△POM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求f(x)的单调区间;
(3)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中有如下三个结论:点P在曲线C上,则点P的极坐标满足曲线C的极坐标方程;tan θ=1(ρ≥0)与θ≥0)表示同一条曲线;ρ=3与ρ=-3表示同一条曲线.其中正确的是(  )

A. ①③ B. C. ②③ D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2﹣2x﹣3,定义数列{ xn}如下:x1=2,xn+1是过两点P(4,5),Qn( xn , f(xn))的直线PQn与x轴交点的横坐标.
(1)证明:2≤xn<xn+1<3;
(2)求数列{ xn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面ABCD,底部ABCD为菱形,ECD的中点.

(Ⅰ)求证:BD⊥平面PAC

(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE

(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|ax2+2x+1=0aR}

1)若A只有一个元素,试求a的值,并求出这个元素;

2)若A是空集,求a的取值范围;

3)若A中至多有一个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数满足.且

(1)求的解析式;

(2)若在区间[-1,1]上不等式恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1 , D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:

(1)平面ADE⊥平面BCC1B1
(2)直线A1F∥平面ADE.

查看答案和解析>>

同步练习册答案