精英家教网 > 高中数学 > 题目详情

【题目】已知函数 为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求f(x)的单调区间;
(3)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e2

【答案】
(1)

解:∵f′(x)= ,x∈(0,+∞),

且y=f(x)在(1,f(1))处的切线与x轴平行,

∴f′(1)=0,

∴k=1;


(2)

解:由(1)得:f′(x)= (1﹣x﹣xlnx),x∈(0,+∞),

令h(x)=1﹣x﹣xlnx,x∈(0,+∞),

当x∈(0,1)时,h(x)>0,当x∈(1,+∞)时,h(x)<0,

又ex>0,

∴x∈(0,1)时,f′(x)>0,

x∈(1,+∞)时,f′x)<0,

∴f(x)在(0,1)递增,在(1,+∞)递减;


(3)

证明:∵g(x)=(x2+x)f′(x),

∴g(x)= (1﹣x﹣xlnx),x∈(0,+∞),

x>0,g(x)<1+e21﹣x﹣xlnx< (1+e2),

由(2)h(x)=1﹣x﹣xlnx,x∈(0,+∞),

∴h′(x)=﹣(lnx﹣lne2),x∈(0,+∞),

∴x∈(0,e2)时,h′(x)>0,h(x)递增,

x∈(e2,+∞)时,h(x)<0,h(x)递减,

∴h(x)max=h(e2)=1+e2

∴1﹣x﹣xlnx≤1+e2

设m(x)=ex﹣(x+1),

∴m′(x)=ex﹣1=ex﹣e0

∴x∈(0,+∞)时,m′(x)>0,m(x)递增,

∴m(x)>m(0)=0,

∴x∈(0,+∞)时,m(x)>0,

>1,

∴1﹣x﹣xlnx≤1+e2 (1+e2),

x>0,g(x)<1+e2


【解析】(1)先求出f′(x)= ,x∈(0,+∞),由y=f(x)在(1,
f(1))处的切线与x轴平行,得f′(1)=0,从而求出k=1;(2)由(1)得:f′(x)= (1﹣x﹣xlnx),x∈(0,+∞),令h(x)=1﹣x﹣xlnx,x∈(0,+∞),求出h(x)的导数,从而得f(x)在(0,1)递增,在(1,+∞)递减;(3)因g(x)= (1﹣x﹣xlnx),x∈(0,+∞),由(2)h(x)=1﹣x﹣xlnx,x∈(0,+∞),得1﹣x﹣xlnx≤1+e2 , 设m(x)=ex﹣(x+1),得m(x)>m(0)=0,进而1﹣x﹣xlnx≤1+e2 (1+e2),问题得以证明.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知数列是等比数列,且公比为,记是数列的前项和.

1)若11,求的值;

2若首项是正整数,满足不等式|63|62对于任意正整数都成立,问:这样的数列有几个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx,1), =( Acosx, cos2x)(A>0),函数f(x)= 的最大值为6.
(1)求A;
(2)将函数y=f(x)的图象像左平移 个单位,再将所得图象各点的横坐标缩短为原来的 倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0, ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】p:实数x满足x2-5ax+4a2<0(其中a>0),q:实数x满足2<x≤5.

(1)若a=1,且pq为真,求实数x的取值范围;

(2)若qp的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD, ,PA=2,E是PC上的一点,PE=2EC.

(1)证明:PC⊥平面BED;
(2)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有6名男医生,4名女医生.

(1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,一个地区去一名教师,共有多少种分派方法?

(2)把10名医生分成两组,每组5人且每组都要有女医生,共有多少种不同的分法?若将这两组医生分派到两地去,又有多少种分派方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=﹣ n2+kn(其中k∈N+),且Sn的最大值为8.
(1)确定常数k,求an
(2)求数列 的前n项和Tn

查看答案和解析>>

同步练习册答案