精英家教网 > 高中数学 > 题目详情

【题目】己知数列是等比数列,且公比为,记是数列的前项和.

1)若11,求的值;

2若首项是正整数,满足不等式|63|62对于任意正整数都成立,问:这样的数列有几个?

【答案】1;(2114

【解析】

(1)利用等比数列的求和公式,进而可求的值;

(2)根据满足不等式|﹣63|<62,可确定的范围,进而可得随着的增大而增大,利用,可求解.

(1)已知数列是等比数列,且公比为,记是数列的前项和,=1,

(2) 满足不等式|﹣63|<62,

,且

,得随着的增大而增大,得

又且对于任意正整数都成立,得,且是正整数,

满足的个数为:124﹣11+1=114个,即有114个,所以有114数列

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在直角坐标系中,点到抛物线的准线的距离为.上的定点,上的两动点,且线段的中点在直线.

(Ⅰ)求曲线的方程及的值;

(Ⅱ)记的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)曲线相交于两点,求过两点且面积最小的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为正整数,集合),对于集合中的任意元素,记.

1)当时,若,求的值;

2)当时,设的子集,且满足:对于中的任意元素,当相同时,是奇数,当不同时,是偶数,求集合中元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上为增函数,求的取值范围;

(2)若函数有两个不同的极值点,记作,且,证明:为自然对数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,过点的直线的参数方程为为参数).以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题方程表示焦点在轴上的椭圆,命题双曲线的离心率,若“”为假命题,“”为真命题,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(22),圆Cx2y28y0,过点P的动直线l与圆C交于AB两点,线段AB的中点为MO为坐标原点.

(1)M的轨迹方程;

(2)|OP||OM|时,求l的方程及△POM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求f(x)的单调区间;
(3)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e2

查看答案和解析>>

同步练习册答案