精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中有如下三个结论:点P在曲线C上,则点P的极坐标满足曲线C的极坐标方程;tan θ=1(ρ≥0)与θ≥0)表示同一条曲线;ρ=3与ρ=-3表示同一条曲线.其中正确的是(  )

A. ①③ B. C. ②③ D.

【答案】D

【解析】分析:利用曲线的极坐标方程的知识逐一判断得解.

详解:在直角坐标系内,曲线上每一点的坐标一定适合它的方程,但在极坐标系内,曲线上一点的所有极坐标不一定都适合方程,如:曲线C的极坐标方程为,点P(-1,0)显然在曲线C上,但是点P的极坐标并不满足C的极坐标方程,故错误;tanθ=1不仅表示θ,还表示θ,故错误;ρ=3与ρ=-3差别仅在于方向不同,但都表示圆心为极点,半径为3的圆,故正确.故答案为:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆心为的圆过点,且与直线相切于点

1)求圆的方程;

2)已知点,且对于圆上任一点,线段上存在异于点的一点,使得为常数),试判断使的面积等于4的点有几个,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD, ,PA=2,E是PC上的一点,PE=2EC.

(1)证明:PC⊥平面BED;
(2)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有6名男医生,4名女医生.

(1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,一个地区去一名教师,共有多少种分派方法?

(2)把10名医生分成两组,每组5人且每组都要有女医生,共有多少种不同的分法?若将这两组医生分派到两地去,又有多少种分派方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了了解某地区电视观众对某体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面2×2列联表,并据此资料你是否认为“体育迷”与性别有关?

非体育迷

体育迷

合计

10

55

合计


(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)

P( K2≥k)

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)设的极值点.求实数的值,并求函数的单调区间;

(II)证明:当 时,.

查看答案和解析>>

同步练习册答案