精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若函数f(x)在区间(1,+∞)上有极小值点,求实数a的取值范围;
(2)若当x∈[-1,1]时,f(x)>0,求实数a的取值范围.
(1)f'(x)=3x2+2ax-(2a+3)=(3x+2a+3)(x-1)
令f′(x)=0,得x=1,或x=-
2a+3
3

使函数f(x)在区间(1,+∞)上有极小值点,
-
2a+3
3
>1
,解得:a<-3.  (6分)
(2)由题意知,即使x∈[-1,1]时,(f(x))min>0.
①当-
2a+3
3
≥1
,即a≤-3时,f(x)在x∈[-1,1]上单调递增,
∴(f(x))min=f(-1)=a2+3a+2>0,得a>-1或a<-2,
由此得:a≤-3;
②当-1<-
2a+3
3
<1
,即-3<a<0,f(x)在[-1,-
2a+3
3
]
为增函数,在[-
2a+3
3
,1]
上为减函数,
所以(f(x))min=min{f(-1),f(1)},
f(-1)=a2+3a+2>0
f(1)=a2-a-2>0
?a>2
或a<-2
由此得-3<a<-2;
③当-
2a+3
3
≤-1
,即a≥0,f(x)在x∈[-1,1]上为减函数,所以(f(x))min=f(1)=a2-a-2>0
得a>2或a<-1,由此得a>2;
由①②③得实数a的取值范围为a>2或a<-2.(15分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案