精英家教网 > 高中数学 > 题目详情
在△ABC中,若c2=a2+b2+ab,则△ABC是(  )
A、等边三角形
B、锐角三角形
C、直角三角形
D、钝角三角形
考点:余弦定理
专题:解三角形
分析:由c2=a2+b2+ab,利用余弦定理可得cosC=
a2+b2-c2
2ab
=
-ab
2ab
=-
1
2
,即可得出.
解答: 解:∵c2=a2+b2+ab,
∴cosC=
a2+b2-c2
2ab
=
-ab
2ab
=-
1
2

∴C=
3
为钝角.
∴△ABC是钝角三角形.
故选:D.
点评:本题考查了利用余弦定理判定三角形的形状,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数满足f(x)满足f(x)=-
1
f(x-1)
,当x∈[3,4]时,f(x)=x-2,则(  )
A、f(sin2)>f(cos2)
B、f(sin
π
3
)>f(cos
π
3
C、f(sin1)>f(cos1)
D、f(sin
3
2
)>f(cos
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

从100名学生中抽取20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:
(1)求频率分布直方图中a的值;
(2)估计总体中成绩落在[50,70)中的学生人数;
(3)估计总体的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列 {an}的前n项和为 Sn,a5+a6=24,S11=143数列 {bn}的前n项和为Tn满足2an-1Tn-(a1-1)(n∈N*)
(Ⅰ)求数列 {an}的通项公式及数列 {
1
anan+1
}
的前n项和;
(Ⅱ)是否存在非零实数 λ,使得数列 {bn}为等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题“2≤x<4”是命题“3m-1≤x≤-m”的必要非充分条件,则m的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若sinθ+sin2θ=1,求cos2θ+cos4θ的值;
(2)已知3sinx+5cosx=5,求3cosx-5sinx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在[-1,1]上的函数f(x)=x2+x2014+1,则不等式f(x-1)>f(2x)的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(ωx+φ)(A>0,ω>0,-π<φ<0),y=f(x)的周期为π,其图象最高点(
8
,1).
(1)求该函数的解析式;
(2)用“五点法”画出函数y=f(x)在区间[0,π]上的图象;
(3)方程f(x)=a在[
8
8
]上有两个相异的根x1、x2,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=msinx+cosx(x∈R)的图象经过点(
π
2
,1).
(1)求y=f(x)的解析式;
(2)求函数的最小正周期和最大值和单调递增区间.

查看答案和解析>>

同步练习册答案