精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{-x-1,x≤0}\end{array}\right.$,设曲线y=f(x)在点(1,0)处的切线为l,记x轴、l以及曲线y=f(x)所围成的封闭区域为D,则z=x-3y(点(x,y)∈D)的最大值是(  )
A.3B.4C.2D.-1

分析 求函数的导数,利用导数的几何意义求在(1,0)处的切线方程,然后根据线性规划的求z=x-3y在D上的最大值.

解答 解:当x>0时,函数的导数为f'(x)=$\frac{1}{x}$,
所以在点(1,0)处的切线斜率k=f′(1)=1,
所以切线方程为y=x-1,
D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域如下图阴影部分
z=x-3y可变形成y=$\frac{1}{3}x-\frac{z}{3}$,
当直线y=$\frac{1}{3}x-\frac{z}{3}$,过点A(0,-1)时,截距最小,此时z最大,故最大值为3.
故选:A.

点评 本题主要考查导数的几何意义,以及利用线性规划的应用,综合性较强,考查学生解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.试求二次函数f(x)=x2+2ax+3在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色不同的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,则sinC=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的偶函数f (x)满足:对任意的x1、x2∈(-∞,0]( x1≠x2),有(x2-x1)[f (x2)-f (x1)]>0,则当n∈N*时,有(  )
A.f (-n)<f (n-1)<f (n+1)B.f (n+1)<f (-n)<f (n-1)
C.f (n-1)<f (-n)<f (n+1)D.f (n+1)<f (n-1)<f (-n)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设二次函数f(x)=x2+ax+b,若方程f(f(x))=0有4个不同的实根,其中有两个根的和等于-1,则b的取值范围是-$\frac{3}{2}$≤b<-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算定积分
(1)${∫}_{0}^{π}$(sinx-cosx)dx;
(2)${∫}_{0}^{2}$|1-x|dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知一次函数f(x)=kx+2与反比例函数g(x)=$\frac{m}{x}$的图象交于两点P(3,-1)、Q(x0,y0
(1)求k,m值及Q点坐标
(2)当x>0时,试写出f(x)>g(x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.8.已函数f(x)=x|x-a|,a∈R.
(1)当a=2时.求f(x)的单调区间;
(2)设a≥2,求函数f(x)在区间[2,4]内的值域.

查看答案和解析>>

同步练习册答案