精英家教网 > 高中数学 > 题目详情
4.求函数y=2x+2-3•4x,x∈[-1,0]的值域.

分析 根据函数y的解析式与自变量的取值范围,求出函数y的最大、最小值即可.

解答 解:∵函数y=2x+2-3•4x
=22•2x-3•(2x2
=-3[(2x2-$\frac{4}{3}$•2x+$\frac{4}{9}$]+$\frac{4}{3}$
=-3${{(2}^{x}-\frac{2}{3})}^{2}$+$\frac{4}{3}$,
∴当x∈[-1,0]时,2x∈[$\frac{1}{2}$,1],
∴当2x=$\frac{2}{3}$,即x=log2$\frac{2}{3}$=1-log23时,函数y取得最大值$\frac{4}{3}$,
当2x=1,即x=0时,函数y取得最小值1;
∴函数y的值域是[1,$\frac{4}{3}$].

点评 本题考查了复合函数的性质与应用问题,也考查了求函数最值的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知α,β是两个不同的平面,m,n是两条不同的直线,现给出下列命题:
①若m?α,n?α,m∥β,n∥β,则α∥β;  
②若α⊥β,m?α,则m⊥β;
③若m⊥α,m∥β,则α⊥β;             
④若m∥n,m?α,则n∥α.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面上,Rt△ABC有勾股定理(即$∠C=\frac{π}{2}$,则有c2=a2+b2),类比到空间中,已知三棱锥P-DEF中,∠PDF=$∠PDE=∠EDF=\frac{π}{2}$,用S1,S2,S3,S分别表示△PDF,△PDE,△EDF,△PEF的面积,则有结论:S2=S12+S22+S32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点A(x1,x${\;}_{1}^{2}$),B(x2,x${\;}_{2}^{2}$)是抛物线y=x2上任意不同的两点,线段AB总是位于A,B两点之间函数图象的上方,因此有结论$\frac{{x}_{1}^{2}+{x}_{2}^{2}}{2}$>$\frac{({x}_{1}+{x}_{2})^{2}}{2}$2成立,运用类比的方法可知,若点A(x1,sinx1),B(x2,sinx2)是函数y=sinx(x∈(0,π))图象上不同的两点,线段AB总是位于A,B两点之间函数y=sinx(x∈(0,π))图象的下方,则类似地有结论$\frac{sin{x}_{1}+sin{x}_{2}}{2}$<sin$\frac{{x}_{1}+{x}_{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从6件正品与3件次品中任取3件,观察正品件数与次品件数,则下列事件既是互斥事件又是对立事件的是(  )
A.“恰好有1件次品”和“恰好有2件次品”
B.“至少有1件次品”和“全是次品”
C.“至少有1件正品”和“至多有1件次品”
D.“至少有2件次品”和“至多有1件次品”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+|x+1-a|,其中a为实常数.
(1)判断f(x)的奇偶性;
(2)若对于任意x∈R,使不等式f(x)>2|x-a|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用数归纳法证明当n为正奇数时,xn+yn能被x+y整除,k∈N*第二步是(  )
A.设n=2k+1时正确,再推n=2k+3正确
B.设n=2k-1时正确,再推n=2k+1时正确
C.设n=k时正确,再推n=k+2时正确
D.设n≤k(k≥1)正确,再推n=k+2时正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的值域.
(1)f(x)=$\frac{3x+2}{4x-1}$;
(2)f(x)=$\frac{3x}{2{x}^{2}+2x+1}$;
(3)f(x)$\frac{3{x}^{2}+2x+1}{2{x}^{2}+2x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=2x+$\frac{1}{x}$(x>0)的最小值是2$\sqrt{2}$,此时x=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案