精英家教网 > 高中数学 > 题目详情
7.过已知双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左焦点F1作⊙O2:x2+y2=4的两条切线,记切点为A,B,双曲线的左顶点为C,若∠ACB=120°,则双曲线的离心率为(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 根据∠ACB=120°,OA=OC,可以得到∠AFO=30°,从而得到a与c的关系式,进而可求双曲线的离心率.

解答 解:因为∠ACB=120°,OA=OC,所以∠AOC=60°
∵FA是圆的切线,∴∠AFO=30°,
∴OF=2OC,
∴c=4,
∵a=2,
∴e=$\frac{c}{a}$=2
故选:D.

点评 本题考查双曲线的离心率,解题的关键是熟练掌握双曲线与圆的位置关系,结合有关条件确定a、b与c的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知定点P在定圆O圆内或圆周上,圆C经过点P且与定圆O相切,则动圆C的圆心的轨迹是(  )
A.两条射线或圆或椭圆B.圆或椭圆或双曲线
C.两条射线或圆或抛物线D.椭圆或双曲线或抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知,如图,已知PA和PB是⊙O的两条切线,PCD是⊙O的割线,弦AE∥PD,EB交CD于点F.求证:
(1)P,F,O,B四点共圆;
(2)CF=FD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设0<a<1,0<θ<$\frac{π}{4}$,x=(sinθ)${\;}^{lo{g}_{a}sinθ}$,y=(cosθ)${\;}^{lo{g}_{a}tanθ}$,则x,y的大小关系是x<y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,AB是圆O的直径,P是AB延长线上的一点,过P作圆O的切线,切点为C,PC=$2\sqrt{3}$,若∠CAB=30°,则圆O的直径AB等于(  )
A.2B.4C.6D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知α是第二象限角,且sinα=$\frac{{\sqrt{15}}}{4}$,求$\frac{{sin(α+\frac{π}{4})}}{sin2α+cos2α+1}$的值.
(2)已知sin(π+α)=$\frac{1}{2}$,求$\frac{{sin({2π-α})cos(α+\frac{π}{2})}}{sin(α-π)}-\frac{{sin(α-\frac{3π}{2})}}{{tan({α-π})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)的定义域为(0,+∞),若y=$\frac{f(x)}{x}$在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=$\frac{f(x)}{x^2}$在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为Ω1,所有“二阶比增函数”组成的集合记为Ω2
(1)已知函数f(x)=$\frac{{{x^{\frac{5}{2}}}arctanx}}{{\sqrt{x}}}$,判断f(x)与集合Ω1,Ω2的关系,并证明你的判断;
(2)已知函数f(x)=x3-2hx2-hx,若f(x)∈Ω1且f(x)∉Ω2,求实数h的取值范围;
(3)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函数值由下表给出,
xabca+b+c
f(x)ddt4
求证:d(2d+t-4)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知曲线y=$\frac{1}{{e}^{x}+1}$,则曲线的切线斜率最小值为-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数集{x-1,x2-1}中的x的取值范围是(-∞,0)∪(0,1)∪(1,+∞).

查看答案和解析>>

同步练习册答案