精英家教网 > 高中数学 > 题目详情
4.幂函数y=f(x)的图象经过点(2,8),若f(a)=64则a的值为4.

分析 由幂函数的性质利用待定系数法求出f(x)=x3,从而f(a)=a3=64,由此能求出a.

解答 解:∵幂函数y=f(x)=xα的图象经过点(2,8),
∴f(2)=2α=8,解得α=3,
∴f(x)=x3
∵f(a)=64,∴f(a)=a3=64,
解得a=4.
故答案为:4.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意幂函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=mx2-2x+m的值域为[0,+∞),则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$,F1,F2分别为椭圆的左右焦点,P为椭圆上任意一点,△PF1F2的周长为$4+2\sqrt{3}$,直线l:y=kx+m(k≠0)与椭圆C相交于A,B两点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l与圆x2+y2=1相切,过椭圆C的右焦点F2作垂直于x轴的直线,与椭圆相交于M,N两点,与线段AB相交于一点(与A,B不重合).求四边形MANB面积的最大值及取得最大值时直线l的方程;
(Ⅲ)若|AB|=2,试判断直线l与圆x2+y2=1的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果cosα=$\frac{1}{5}$,且α是第四象限的角,那么cos(α+$\frac{π}{3}$)=(  )
A.$\frac{1-6\sqrt{2}}{10}$B.$\frac{\sqrt{3}+2\sqrt{6}}{10}$C.$\frac{1+6\sqrt{2}}{10}$D.$\frac{\sqrt{3}-2\sqrt{6}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}是等差数列,前n项和为 Sn且满足a3-a1=4,S3=12.
(1)求数列{an}的通项公式; 
(2)设bn=an•2n-1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$cos(\frac{π}{2}-a)=-\frac{1}{3}$,则cos(π-2a)=(  )
A.-$\frac{4\sqrt{2}}{9}$B.-$\frac{7}{9}$C.$\frac{7}{9}$D.$\frac{4\sqrt{2}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:“等轴双曲线的渐近线互相垂直”;命题q:“直线l与抛物线C只有一个公共点,则l与C相切”,下列结论正确的是(  )
A.p∧q为真B.p∨q为假C.p∧(¬p)为真D.(¬p)∨q为真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)满足xf′(x)=(x-1)f(x),且f(1)=1,若A为△ABC的最大内角,则f[tan(A-$\frac{π}{3}$)]的取值范围为(-$\frac{\sqrt{3}}{3{e}^{1+\sqrt{3}}}$,0)∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一个直角梯形上底、下底和高之比为$2:4:\sqrt{5}$,将此直角梯形以垂直于底的腰为轴旋转一周形成一个圆台,求这个圆台上底面积、下底面积和侧面积之比.

查看答案和解析>>

同步练习册答案