精英家教网 > 高中数学 > 题目详情
1.如图是底面半径为1,高为2的圆柱被削掉一部分后剩余的几何体的三视图(注:正视图也称主视图,侧视图也称左视图),则被削掉的那部分的体积为(  )
A.$\frac{π+2}{3}$B.$\frac{5π-2}{3}$C.$\frac{5π}{3}$-2D.2$π-\frac{2}{3}$

分析 根据几何体的三视图,得出该几何体是半圆锥体与直三棱锥的组合体,求出该几何体的体积,再求出圆柱的体积,即可求出被削掉的那部分体积.

解答 解:根据几何体的三视图,得;
该几何体是底面半径为1,高为2的半圆锥体,
与底面为等腰三角形高为2的三棱锥的组合体,
其体积为$\frac{1}{2}$•$\frac{1}{3}$πr2h+$\frac{1}{3}$Sh=$\frac{1}{6}$π×12×2+$\frac{1}{3}$×$\frac{1}{2}$×2×1×2=$\frac{π+2}{3}$;
又圆柱的体积为πr2h=π×12×2=2π,
所以被削掉的那部分的体积为2π-$\frac{π+2}{3}$=$\frac{5π-2}{3}$.
故选:B.

点评 本题考查了由三视图求几何体的体积的应用问题,也考查了三视图与实物图之间的关系问题,解题时应用三视图中的数据还原出实物图的数据,再根据相关的公式求表体积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:
生长指数210-1
地域南区空气质量好45542635
空气质量差716125
北区空气质量好701052025
空气质量差1938185
其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,-1代表“不良好,绝收”.
(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;
(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?
(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-1|+|x+a|,其中a为实常数.
(Ⅰ)若函数f(x)的最小值为2,求a的值;
(Ⅱ)当x∈[0,1]时,不等式|x-2|≥f(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在几何体ABCDEF中,等腰梯形ABCD所在的平面与正方形CDEF所在的平面互相垂直,已知AB∥CD,AB=2BC=4,∠ABC=60°,点M是线段AC的中点.
(Ⅰ)求证:CF⊥AD;
(Ⅱ)求证:ME∥平面BCF;
(Ⅲ)对于线段EF上的任意一点G,是否总有平面ACG⊥平面BCF,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}满足${a_1}=2,{a_{n+1}}=\frac{{{2^{n+1}}{a_n}}}{{(n+\frac{1}{2}){a_n}+{2^n}}}(n∈N*)$.
(1)设${b_n}=\frac{2^n}{a_n}$,求数列{bn}的通项公式; 
(2)设${c_n}=\frac{1}{{n(n+1){a_{n+1}}}}-\frac{1}{{{2^{n+2}}}}$,数列{cn}的前n项和为Sn,不等式$\frac{1}{4}{m^2}-\frac{1}{4}m>{S_n}$对一切n∈N*成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在空间中,设m,n为两条不同直线,α,β为两个不同平面,则下列命题正确的是(  )
A.若m∥α且α∥β,则m∥β
B.若α⊥β,m?α,n?β,则m⊥n
C.若m⊥α且α∥β,则m⊥β
D.若m不垂直于α,且n?α,则m必不垂直于n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,内角A,B,C的对边分别为a,b,c,且b=1,c=2,∠C=60°,若D是边BC上一点且∠B=∠DAC,则AD=$\frac{\sqrt{13}-1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知异面直线a与b所成角为锐角,下列结论不正确的是(  )
A.不存在一个平面α使得a?α,b?αB.存在一个平面α使得a∥α,b∥α
C.不存在一个平面α使得a⊥α,b⊥αD.存在一个平面α使得a∥α,b⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=$\left\{\begin{array}{l}{|x-1|(0≤x≤2)}\\{0(x<0或x>2)}\end{array}\right.$,求${∫}_{-1}^{3}$f(x)dx的值1.

查看答案和解析>>

同步练习册答案