分析 (Ⅰ)求出f(x)的最小值,得到|a+1|=2,解出a的值即可;(Ⅱ)问题转化为|x+a|≤1,求出x的范围,结合集合的包含关系得到关于a的不等式组,解出即可.
解答 解:(Ⅰ)∵f(x)=|x-1|+|x+a|≥|(x-1)-(x+a)|=|a+1|,
当且仅当(x-1)(x+a)≤0时取等号,
∴f(x)min=|a+1|,
由|a+1|=2,解得:a=1或a=-3;
(Ⅱ)当x∈[0,1]时,f(x)=-x+1+|x+a|,
而|x-2|=-x+2,
由|x-2|≥f(x)恒成立,
得-x+2≥-x+1+|x+a|,
即|x+a|≤1,解得:-1-a≤x≤1-a,
由题意得[0,1]⊆[-1-a,1-a],
则$\left\{\begin{array}{l}{-1-a≤0}\\{1-a≥1}\end{array}\right.$,即-1≤a≤0.
点评 本题考查了解绝对值不等式问题,考查了分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 语文成绩分组 | [50,60) | [60,70) | [70,80) | [90,100) | [100,110) | [110,120] |
| 频数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{9}$ | B. | $\frac{7}{9}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 为奇函数且有(-∞,0)上为增函数 | B. | 为偶函数且有(-∞,0)上为增函数 | ||
| C. | 为奇函数且有(-∞,0)上为减函数 | D. | 为偶函数且有(-∞,0)上为减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $π+\frac{8}{3}$ | B. | $\frac{π}{3}+\frac{8}{3}$ | C. | π+8 | D. | $\frac{π}{2}+\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π+2}{3}$ | B. | $\frac{5π-2}{3}$ | C. | $\frac{5π}{3}$-2 | D. | 2$π-\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com