精英家教网 > 高中数学 > 题目详情
13.在△ABC中,内角A,B,C的对边分别为a,b,c,且b=1,c=2,∠C=60°,若D是边BC上一点且∠B=∠DAC,则AD=$\frac{\sqrt{13}-1}{3}$.

分析 在△ABC中使用正弦定理解出B,得出sin∠ADC,在△ACD中使用正弦定理解出AD.

解答 解在△ABC中,由正弦定理得$\frac{b}{sinB}=\frac{c}{sinC}$,即$\frac{1}{sinB}=\frac{2}{\frac{\sqrt{3}}{2}}$,
解得sinB=$\frac{\sqrt{3}}{4}$.∴cosB=$\frac{\sqrt{13}}{4}$.
∴sin∠BAC=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{39}+\sqrt{3}}{8}$.
∵∠B=∠DAC,∴∠ADC=∠B+∠BAD=∠DAC+∠BAD=∠BAC.
∴sin∠ADC=sin∠BAC=$\frac{\sqrt{39}+\sqrt{3}}{8}$.
在△ACD中,由正弦定理得$\frac{AC}{sin∠ADC}=\frac{AD}{sinC}$,即$\frac{1}{\frac{\sqrt{39}+\sqrt{3}}{8}}=\frac{AD}{\frac{\sqrt{3}}{2}}$,
解得AD=$\frac{\sqrt{13}-1}{3}$.
故答案为$\frac{\sqrt{13}-1}{3}$.

点评 本题考查了正弦定理在解三角形中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在某学校进行的一次语文与历史成绩中,随机抽取了25位考生的成绩进行分析,25位考生的语文成绩已经统计在茎叶图中,历史成绩如下:
85    52    64    49    55    71    90    66    46    66    39    61    56 
78    67    77    58    73    42    80    72    67    70    51    65
(Ⅰ)请根据数据在茎叶图中完成历史成绩统计;
(Ⅱ)请根据数据完成语文成绩的频数分布表及语文成绩的频率分布直方图;

语文成绩的频数分布表:
语文成绩分组[50,60)[60,70)[70,80)[90,100)[100,110)[110,120]
频数
(Ⅲ)设上述样本中第i位考生的语文、历史成绩分别为xi,yi(i=1,2,…,25).通过对样本数据进行初步处理发现:语文、历史成绩具有线性相关关系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
①求y关于x的线性回归方程;
②并据此预测,当某考生的语文成绩为100分时,该生历史成绩.(精确到0.1分)
附:回归直线方程的斜率和截距的最小二乘法估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-\overline{n}x•\overline{y}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=($\sqrt{2}$,$\sqrt{2}$),$\overrightarrow{b}$=(cosx,sinx),$\overrightarrow{a}•\overrightarrow{b}$=$\frac{8}{5}$,且$\frac{π}{4}<x<\frac{π}{2}$,则cos(x+$\frac{π}{4}$)的值为(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是底面半径为1,高为2的圆柱被削掉一部分后剩余的几何体的三视图(注:正视图也称主视图,侧视图也称左视图),则被削掉的那部分的体积为(  )
A.$\frac{π+2}{3}$B.$\frac{5π-2}{3}$C.$\frac{5π}{3}$-2D.2$π-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A、B、C所对的边分别为a、b、c,且满足cos2C-cos2A=2sin($\frac{π}{3}$+C)•sin($\frac{π}{3}$-C).
(1)求角A的值;
(2)若a=$\sqrt{3}$且b≥a,求2b-c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.①用辗转相除法或更相减损术求228与1995的最大公约数
②将104转化为三进制数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在四边形ABCD中,∠B=120°,∠C=150°,且AB=3,BC=1,CD=2,则AD的长所在的区间为(  )
A.(2,3)B.(3,4)C.(4,5)D.(5,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在正三棱柱ABC-A1B1C1中,BC=B1B,D,E分别是棱BC,BB1的中点,点F在棱B1C1上,且B1F=$\frac{1}{4}$B1C1
求证:
(1)EF∥面ADC1
(2)面ACE⊥面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若圆C:x2+y2-4x+4y+m=与x轴交于A、B两点,且∠ACB=120°,则实数m的值为(  )
A.24B.-8C.8D.4

查看答案和解析>>

同步练习册答案