精英家教网 > 高中数学 > 题目详情

已知三棱柱平面,四边形为正方形,分别为中点.
(1)求证:∥面
(2)求二面角的余弦值.

(1)见解析(2)

解析试题分析:(1)只要证出,由直线与平面平行的判定定理即可得证
(2)建立空间直角坐标系,利用求二面角的公式求解
试题解析:(1)在分别是的中点


又∵平面平面
∥平面
(2)如图所示,建立空间直角坐标系



平面的一个法向量
设平面的一个法向量为

.

∴二面角的余弦值是.
考点:直线与平面平行的判定定理,在空间直角坐标系中求二面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正方体的边长为2,分别为的中点,在五棱锥中,为棱的中点,平面与棱分别交于.
(1)求证:
(2)若底面,且,求直线与平面所成角的大小,并求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,底面是边长为2的菱形,且,以为底面分别作相同的正三棱锥,且.

(1)求证:平面
(2)求平面与平面所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.
(1)若PM=PA,求证:MN⊥AD;
(2)若二面角M-BD-A的大小为,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,直线平面,且
,又点分别是线段的中点,且点是线段上的动点.

(1)证明:直线平面
(2)若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱中,侧棱平面为等腰直角三角形,,且分别是的中点.

(1)求证:平面
(2)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在边长为1的等边三角形ABC中,DE分别是ABAC边上的点,AD=AEFBC的中点,AFDE交于点G,将沿AF折起,得到如图所示的三棱锥,其中.

(1) 证明://平面;
(2) 证明:平面;
(3)当时,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设ab.
(1)求ab的夹角θ;
(2)若向量kab与ka-2b互相垂直,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC­A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求证:AA1⊥平面ABC;
(2)求二面角A1­BC1­B1的余弦值;
(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.

查看答案和解析>>

同步练习册答案