精英家教网 > 高中数学 > 题目详情

如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.
(1)若PM=PA,求证:MN⊥AD;
(2)若二面角M-BD-A的大小为,求线段MN的长度.

(1)详见解析;(2)

解析试题分析:(1)由于这是一个正四棱锥,故易建立空间坐标系,易得各点的坐标,由,得,由,得,即可求得向量的坐标:.不难计算出它们的数量积,问题得证;(2)利用上,可设,得出点的坐标,表示出,进而求出平面的法向量n=(λ-1,0,λ),由向量的夹角公式可得,解得,从而确定出,由两点间距离公式得.
试题解析:证明:连接交于点,以轴正方向,以轴正方向,轴建立空间直角坐标系.
因为,则
(1)由,得,由,得
所以
因为.所以.                   4分
(2)因为上,可设,得
所以
设平面的法向量

其中一组解为,所以可取n=(λ-1,0,λ).        8分
因为平面的法向量为
所以,解得, 
从而
所以.                      10分
考点:1.线线垂直的证明;2.二面角的计算

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC-A1B1C1中,已知侧面,AB=BC=1,BB1=2,∠BCC1=.
(1) 求证:C1B⊥平面ABC;
(2)设 =l(0≤l≤1),且平面AB1E与BB1E所成的锐二面角  
的大小为30°,试求l的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点.
(1)求点A1到平面的BDEF的距离;
(2)求直线A1D与平面BDEF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为1的正三角形所在平面与直角梯形所在平面垂直,且分别是线段的中点.

(1)求证:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD.已知ABC=45o,AB=2,BC=2,SA=SB=

(1)证明:SABC;
(2)求直线SD与平面SAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,在棱上.

(1)求异面直线所成的角;
(2)若二面角的大小为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱柱平面,四边形为正方形,分别为中点.
(1)求证:∥面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为正方形,侧面底面为等腰直角三角形,且分别为底边和侧棱的中点.

(1)求证:∥平面
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,矩形所在的平面和平面互相垂直,等腰梯形中,=2,分别为的中点,为底面的重心.

(1)求证:∥平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案