精英家教网 > 高中数学 > 题目详情

如图,边长为1的正三角形所在平面与直角梯形所在平面垂直,且分别是线段的中点.

(1)求证:平面平面
(2)求二面角的余弦值.

(1)详见解析;(2)

解析试题分析:(1)由已知中F为CD的中点,易判断四边形ABCD为平行四边形,进而AF∥BC,同时EF∥SC,再由面面平行的判定定理,即可得到答案.(II)取AB的中点O,连接SO,以O为原点,建立如图所示的空间坐标系,分别求出平面SAC与平面ACF的法向量,代入向量夹角公式,即可求出二面角S-AC-F的大小..
(1)分别是的中点,.又,所以,……2分
四边形是平行四边形.的中点,.……3分
平面平面……5分
(2)取的中点,连接,则在正中,,又平面平面平面平面平面.…6分
于是可建立如图所示的空间直角坐标系

则有
.…7分
设平面的法向量为,由
,得.……9分平面的法向量为.10分
   …11分而二面角的大小为钝角,
二面角的余弦值为
考点:1.用空间向量求平面间的夹角;2.平面与平面平行的判定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,
。M、N分别是AC和BB1的中点。
(1)求二面角的大小。
(2)证明:在AB上存在一个点Q,使得平面⊥平面,   
并求出的长度。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,∠ABC=,∠BAC,AD是BC上的高,沿AD把△ABD折起,使∠BDC

(1)证明:平面ADB⊥平面BDC;
(2)设E为BC的中点,求夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,底面是边长为2的菱形,且,以为底面分别作相同的正三棱锥,且.

(1)求证:平面
(2)求平面与平面所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.

(1)求证:平面平面EBD;
(2)若PA=AB=2,直线PB与平面EBD所成角的正弦值为,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.
(1)若PM=PA,求证:MN⊥AD;
(2)若二面角M-BD-A的大小为,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱中,侧棱平面为等腰直角三角形,,且分别是的中点.

(1)求证:平面
(2)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.
(1)求二面角D1-AE-C的大小;
(2)求证:直线BF∥平面AD1E.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在棱长为1的正四面体ABCD中,E是BC的中点,则 _  ▲   .

查看答案和解析>>

同步练习册答案