如图,在直三棱柱中,
,。M、N分别是AC和BB1的中点。
(1)求二面角的大小。
(2)证明:在AB上存在一个点Q,使得平面⊥平面,
并求出的长度。
(1);(2)详见解析
解析试题分析:(1)有两种思路,其一是利用几何体中的垂直关系,以B为坐标原点,所在的直线分别为,轴,轴,轴建立空间直角坐标系,利用平面与平面的法向量的夹角求二面角的大小.其二是按照作出二面角的平面角,并在三角形中求出该角的方法,利用平面平面,在平面内过点作,垂足是,过作,垂足为,连结,得二面角的平面角,最后在直角三角形中求;
(2)在空间直角坐标系中,设,求出平面的法向量,和平面的法向量
再由确定点的坐标,进而求线段的长度.
方法一(向量法):如图建立空间直角坐标系 1分
(1)
设平面的法向量为,平面的法向量为
则有 3分
5分
设二面角为,则
∴二面角的大小为60°。 6分
(2)设, ∵
∴,设平面的法向量为
则有 10分
由(1)可知平面的法向量为,
平面平面
即此时,
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC-A1B1C1中,已知侧面,AB=BC=1,BB1=2,∠BCC1=.
(1) 求证:C1B⊥平面ABC;
(2)设 =l(0≤l≤1),且平面AB1E与BB1E所成的锐二面角
的大小为30°,试求l的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以,为边的平行四边形的面积;
(2)若|a|=,且a分别与,垂直,求向量a的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点.
(1)求点A1到平面的BDEF的距离;
(2)求直线A1D与平面BDEF所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥的底面为正方形,侧面底面.为等腰直角三角形,且.,分别为底边和侧棱的中点.
(1)求证:∥平面;
(2)求证:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com