精英家教网 > 高中数学 > 题目详情

如图,四棱锥的底面为正方形,侧面底面为等腰直角三角形,且分别为底边和侧棱的中点.

(1)求证:∥平面
(2)求证:平面
(3)求二面角的余弦值.

(1)详见解析;(2)详见解析;(3)所以二面角的余弦值为

解析试题分析:(1)求证:∥平面,证明线面平行,首先证明线线平行,可用三角形的中位线平行,也可用平行四边形的对边平行,注意到的中点,取的中点,连接,则所以是△的中位线,证得四边形是平行四边形,从而得,从而可证∥平面;(2)求证:平面,可用空间向量法,注意到平面平面,可以点为原点,分别以轴,建立空间直角坐标系,由题意设,则的各点坐标,从而得,利用数量积得,从而得证;(Ⅲ)求二面角的余弦值,由(2)建立空间直角坐标系,可设平面的法向量为,求出一个法向量,由(2)可知平面的法向量是,利用向量的夹角公式,即可求得二面角的余弦值.
试题解析:(1)取的中点,连接.
因为分别是的中点,
所以是△的中位线. 所以,且
又因为的中点,且底面为正方形,
所以,且.所以,且
所以四边形是平行四边形.所以
平面平面,所以平面.                 4分

(2)证明:因为平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,
。M、N分别是AC和BB1的中点。
(1)求二面角的大小。
(2)证明:在AB上存在一个点Q,使得平面⊥平面,   
并求出的长度。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.
(1)若PM=PA,求证:MN⊥AD;
(2)若二面角M-BD-A的大小为,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱中,侧棱平面为等腰直角三角形,,且分别是的中点.

(1)求证:平面
(2)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在边长为1的等边三角形ABC中,DE分别是ABAC边上的点,AD=AEFBC的中点,AFDE交于点G,将沿AF折起,得到如图所示的三棱锥,其中.

(1) 证明://平面;
(2) 证明:平面;
(3)当时,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面为直角梯形,底面,且的中点.
⑴求证:直线平面
⑵⑵若直线与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设ab.
(1)求ab的夹角θ;
(2)若向量kab与ka-2b互相垂直,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.
(1)求二面角D1-AE-C的大小;
(2)求证:直线BF∥平面AD1E.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P­ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角Q­AC­D的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案