分析 (Ⅰ)由余弦定理得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,由此能求出B.
(Ⅱ)求出$\overrightarrow{m}•\overrightarrow{n}$=-6sinA-cos2A=2(sinA-$\frac{3}{2}$)2-$\frac{11}{2}$,由此能求出$\overrightarrow{m}•\overrightarrow{n}$取得的最小值.
解答 解:(Ⅰ)∵在△ABC中,a、b、c是角A、B、C所对的边,且满足a2+c2-b2=ac.
∴由余弦定理得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,
又∵0<B<π,∴B=$\frac{π}{3}$.
(Ⅱ)∵$\overrightarrow{m}$=(sinA,cos2A),$\overrightarrow{n}$=(-6,-1),
∴$\overrightarrow{m}•\overrightarrow{n}$=-6sinA-cos2A
=2sin2A-6sinA-1
=2(sinA-$\frac{3}{2}$)2-$\frac{11}{2}$,
∵0<A<$\frac{2π}{3}$,∴0<sinA≤1.
∴当sinA=1时,$\overrightarrow{m}•\overrightarrow{n}$取得最小值为-5.
点评 本题考查三角形中角的大小的求法,考查向量的数量积的求法,考查余弦定理、向量的数量积等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | sin(α+$\frac{4π}{3}$) | B. | sin(α+$\frac{7π}{6}$) | C. | -sin(α+$\frac{π}{3}$) | D. | sin(α-$\frac{2π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\widehat{{b}_{1}}$>0 | B. | R${\;}_{2}^{2}$>R${\;}_{1}^{2}$ | C. | 直线l1恰好过点C | D. | $\widehat{{b}_{2}}$<$\widehat{{b}_{1}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | $\frac{1}{8}$ | C. | 3 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源:2017届重庆市高三10月月考数学(文)试卷(解析版) 题型:解答题
选修4-1:几何证明选讲
如图所示,已知圆
外有一点
,作圆
的切线
,
为切点,过
的中点
,作割线
,交圆于
、
两点,连接
并延长,交圆
于点
,连接
交圆
于点
,若
.
![]()
(Ⅰ)求证:
;
(Ⅱ)求证:四边形
是平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com