精英家教网 > 高中数学 > 题目详情
11.方程$\frac{x^2}{2+m}+\frac{y^2}{m+1}$=1表示双曲线,则m的取值范围是(  )
A.(-2,-1)B.(-2,+∞)C.(-∞,-1)D.(-∞,-2)∪(-1,+∞)

分析 利用双曲线方程的特点,可得(2+m)(m+1)<0,即可求出m的取值范围.

解答 解:∵方程$\frac{x^2}{2+m}+\frac{y^2}{m+1}$=1表示双曲线,
∴(2+m)(m+1)<0,
∴-2<m<-1.
故选:A.

点评 本题考查双曲线的标准方程,考查学生解不等式的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设方程x2+y2+2$\sqrt{3}$x-ay-2a=0表示圆,实数a的取值范围是(-∞,-6)∪(-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}中,a1=3,an+1=-$\frac{1}{{a}_{n}+1}$(n∈N*),能使an=3的n可以等于(  )
A.14B.15C.16D.17

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}的各项都是正数,a1=2,an+12=an2+2,那么此数列的通项公式为an=$\sqrt{2n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,正方体ABCD-A1B1C1D1的棱长为1,E为A1B1的中点,则下列五个命题:
①点E到平面ABC1D1的距离为$\frac{1}{2}$;
②直线BC与平面ABC1D1所成角为45°;
③空间四边形ABCD1在正方体六个面内的射影围成的图形中,面积最小的值为$\frac{1}{2}$;
④BE与CD1所成角的正弦值为$\frac{{\sqrt{10}}}{10}$;
⑤二面角A-BD1-C的大小为$\frac{5π}{6}$.
其中真命题是②③④.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,直角三角形ABC中,A=60°,沿斜边AC上的高BD,将△ABD折起到△PBD的位置,点E在线段CD上.
(1)求证:PE⊥BD;
(2)过点D作DM⊥BC交BC于点M,点N为PB中点,若PE∥平面DMN,求$\frac{DE}{DC}的值$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,已知正四棱锥S-ABCD,E、F分别是侧棱SA、SC的中点.求证:
(1)EF∥平面ABCD;
(2)EF⊥平面SBD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A={-2,-1,0,1,2},B={x|2x>1},则A∩B=(  )
A.{-1,2}B.{0,1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正方体ABCD-A1B1C1D1中.E是AA1的中点,画出过D1,C,E的平面与平面ABB1A1的交线,并说明理由.

查看答案和解析>>

同步练习册答案