在平面直角坐标系
中,如图,已知椭圆E:
的左、右顶点分别为
、
,上、下顶点分别为
、
.设直线
的倾斜角的正弦值为
,圆
与以线段
为直径的圆关于直线
对称.![]()
(1)求椭圆E的离心率;
(2)判断直线
与圆
的位置关系,并说明理由;
(3)若圆
的面积为
,求圆
的方程.
(1)
,(2)相切,(3)
.
解析试题分析:(1)求椭圆E的离心率,只需列出关于
的一个等量关系就可解出. 因为直线
的倾斜角的正弦值为
,所以
,即
,(2)判断直线
与圆
的位置关系,通常利用圆心到直线距离与半径大小比较. 因为直线
的倾斜角的正弦值为
,所以直线
的斜率为
于是
的方程为:
,因此
中点
到直线
距离为
所以直线
与圆
相切,又圆
与以线段
为直径的圆关于直线
对称,直线
与圆
相切.(3)由圆
的面积为
知圆半径为1,所以
设
关于直线
:
的对称点为
,则
解得
.所以,圆
的方程为
.
【解】(1)设椭圆E的焦距为2c(c>0),
因为直线
的倾斜角的正弦值为
,所以
,
于是
,即
,所以椭圆E的离心率
(2)由
可设
,
,则
,
于是
的方程为:
,
故
的中点
到
的距离![]()
, 又以
为直径的圆的半径
,即有
,
所以直线
与圆
相切.
(3)由圆
的面积为
知圆半径为1,从而
,
设
的中点
关于直线
:
的对称点为
,
则![]()
解得
.所以,圆
的方程为![]()
![]()
科目:高中数学 来源: 题型:解答题
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分6分.
已知椭圆
过点
,两焦点为
、
,
是坐标原点,不经过原点的直线
与椭圆交于两不同点
、
.
(1)求椭圆C的方程;
(2) 当
时,求
面积的最大值;
(3) 若直线
、
、
的斜率依次成等比数列,求直线
的斜率
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在原点
,焦点在
轴上,离心率为
,右焦点到右顶点的距离为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)是否存在与椭圆
交于
两点的直线
:
,使得
成立?若存在,求出实数
的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的椭圆C:
的一个焦点为![]()
为椭圆C上一点,△MOF2的面积为
.
(1)求椭圆C的方程;
(2)是否存在平行于OM的直线l,使得l与椭圆C相交于A、B两点,且以线段AB为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的右焦点为
,短轴的一个端点
到
的距离等于焦距.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
交于不同的两点
,
,是否存在直线
,使得△
与△
的面积比值为
?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的中心和抛物线
的顶点均为原点
,
、
的焦点均在
轴上,过
的焦点F作直线
,与
交于A、B两点,在
、
上各取两个点,将其坐标记录于下表中:![]()
![]()
(1)求
,
的标准方程;
(2)若
与
交于C、D两点,
为
的左焦点,求
的最小值;
(3)点
是
上的两点,且
,求证:
为定值;反之,当
为此定值时,
是否成立?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率
,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线
与椭圆相交于不同的两点
,已知点
的坐标为
,点
在线段
的垂直平分线上,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
巳知椭圆
的离心率是
.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线
,使点C(2,0)关于直线
的对称点在椭圆上,求椭圆的焦距的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com