| A. | 16π | B. | 20π | C. | 32π | D. | 36π |
分析 求出△PAD所在圆的半径,利用勾股定理求出球O的半径R,即可求出球O的表面积.
解答 解:令△PAD所在圆的圆心为O1,则
因为PA=PD=2,∠APD=120°,所以AD=2$\sqrt{3}$
所以圆O1的半径r=$\frac{1}{2}×\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=2,
因为平面PAD⊥底面ABCD,
所以OO1=$\frac{1}{2}$AB=2,
所以球O的半径R=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$
所以球O的表面积=4πR2=32π.
故选:C.
点评 本题考查球O的表面积,考查学生的计算能力,求出球O的半径是关键,比较基础.
科目:高中数学 来源: 题型:选择题
| A. | x2+1≥2|x|(x∈R) | B. | lg(x2+$\frac{1}{4}$)>lgx(x>0) | ||
| C. | sinx+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z) | D. | $\frac{1}{{x}^{2}+1}$<1(x∈R) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $4\sqrt{3}$ | B. | $4\sqrt{5}$ | C. | $4({\sqrt{5}+1})$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 椭圆的一部分 | B. | 双曲线的一部分 | C. | 抛物线的一部分 | D. | 直线的一部分 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com