精英家教网 > 高中数学 > 题目详情
已知实数x,y满足:
x≥1
y≤2
x-y≤0
则(x-3)2+y2的最小值是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组表示的平面区域;通过(x-3)2+y2的几何意义:可行域内的点到(3,0)距离的平方;结合图象求出(3,0)到直线的距离即可.
解答: 解:∵变量x,y满足约束条件
x≥1
y≤2
x-y≤0

目标函数为:(x-3)2+y2,其几何意义是可行域内的点到(3,0)距离的平方;
点P(3,0)到直线x-y=0的距离公式可得:d=
|3-0|
2

结合图形可得(x-3)2+y2的最小值为:(
3
2
2=
9
2

故答案为:
9
2
点评:本题考查画不等式组表示的平面区域、考查数形结合求函数的最值,此题是一道中档题,有一定的难度,画图是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将直线l:y=2x按向量
a
=(3,0)平移得到直线l′,则l′的方程为(  )
A、y=2x-3
B、y=2x+3
C、y=2(x-3)
D、y=2(x+3)

查看答案和解析>>

科目:高中数学 来源: 题型:

若在不等式组
y≥x
x≥0
x+y≤2
所确定的平面区域内任取一点P(x,y),则点P的坐标满足x2+y2≤1的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某电视合为提升收视率,推出大型明星跳水竞技节目《星跳水立方》.由4位奥运跳水冠军萨乌丁、熊倪、高敏、胡佳任教练,分别带领一个队进行竞赛,参加竞赛的队伍按照抽签方式决定出场顺序.
(I)求竞赛中萨乌丁队、熊倪队两支队伍恰好排在前两位的概率;
(Ⅱ)若竞赛中萨乌丁队、熊倪队之间间隔的队伍数记为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示:矩形AnBnCnDn的一边AnBn在x轴上,另两个顶点Cn、Dn在函数f(x)=x+
1
x
(x>0)
的图象上,若点Bn的坐标为(n,0)(n≥2,n∈N*)),矩形AnBnCnDn的周长记为an,则a2+a3+…+a10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)
在极坐标系中,曲线C1和C2的参数方程分别为sinθ+cosθ=
3
ρ
,ρ=2cosθ
,若点P(x,y)为C2对应直角坐标系中图形上一点,点A为C1对应直角坐标系中图形上一点,则|PA|最小值=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题
(1)(矩阵与变换选做题)已知矩阵M=
10
02
,曲线y=sinx在矩阵MN对应的变换作用下得到曲线C,则C的方程是
 

(2)(极坐标与参数方程选做题)在极坐标系中,点(2,
π
2
)到直线ρsin(θ+
π
4
)+
2
=0
的距离是
 

(3)(不等式选讲选做题)若关于x的不等式|x-1|-|x+2|≥a的解集为R,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.现在沿AE将三角形ADE向上折起,在折起的图形中解答下列两问:

(Ⅰ)在线段AB上是否存在一点K,使BC∥面DFK?若存在,请证明你的结论;若不存在,请说明理由;
(Ⅱ)若面ADE⊥面ABCE,求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin
x
2
cos
x
2
+cos2
x
2
-1.
(1)求函数f(x)的最小正周期及单调递减区间;
(2)求函数f(x)在[
π
4
2
]上的最小值.

查看答案和解析>>

同步练习册答案