精英家教网 > 高中数学 > 题目详情
15.将函数f(x)=sinωx-cosωx+1(ω>0)的图象向左平移$\frac{π}{4}$个单位,再向下平移1个单位,得到函数y=g(x)的图象,若y=g(x)的相邻两个零点之差的绝对值等于$\frac{π}{2}$,则函数y=g(x)的一个单调递减区间是(  )
A.[0,$\frac{π}{8}$]B.[$\frac{π}{8}$,π]C.[$\frac{π}{4}$,$\frac{3π}{4}$]D.[$\frac{π}{8}$,$\frac{5π}{8}$]

分析 首先利用图象变换得到ω,然后求其单调减区间,对k求值,得到所求.

解答 解:将函数f(x)=sinωx-cosωx+1=$\sqrt{2}$sin(ωx-$\frac{π}{4}$)+1(ω>0)的图象向左平移$\frac{π}{4}$个单位,再向下平移1个单位,得到函数y=g(x)=$\sqrt{2}$sin[ω(x+$\frac{π}{4}$)-$\frac{π}{4}$]的图象,
由y=g(x)的相邻两个零点之差的绝对值等于$\frac{π}{2}$,得到g(x)周期为π,所以ω=2,
所以g(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
令2k$π+\frac{π}{2}$≤2x+$\frac{π}{4}$≤2k$π+\frac{3}{2}π$,解得k$π+\frac{π}{8}$≤x≤k$π+\frac{5π}{8}$,k∈Z,
所以函数y=g(x)的单调递减区间是[k$π+\frac{π}{8},kπ+\frac{5π}{8}$],k∈Z,
令k=0,得到函数y=g(x)的一个单调递减区间是[$\frac{π}{8},\frac{5π}{8}$];
故选D.

点评 本题考查了三角函数的图形变换以及三角函数图象的性质;熟练掌握正弦函数的图象和性质是解答的关键;属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.中国古代数学著《九章算术》中记载了公元前344年商鞅督造一种标准量器--商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其几何体体积为13.5(立方寸),则图中x的为(  )
A.2.4B.1.8C.1.6D.1.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$a=\frac{1}{2}$,$b={3^{\frac{1}{2}}}$,c=log32,则(  )
A.b>a>cB.c>b>aC.b>c>aD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}满足an+1=$\left\{\begin{array}{l}2{a_n},0≤{a_n}≤\frac{1}{2}\\ 2{a_n}-1,\frac{1}{2}<{a_n}<1\end{array}$,a1=$\frac{3}{5}$,Sn为{an}的前n项和,则S2016=1008.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲,乙两组各4名同学参加学校组织的“抗日战争历史知识知多少”抢答比赛,他们答对的题目个数用茎叶图表示,如图,中间一列的数字表示答对题目个数的十位数,两边的数字表示答对题目个数的个位数.
(1)求甲组同学答对题目个数的平均数和方差;
(2)分别从甲,乙两组中各抽取一名同学,求这两名同学答对题目个数之和为20的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设tanα,tanβ是方程x2+3x-2=0的两个根,则tan(α+β)的值为(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一般吧数字出现的规律满足如图的模型称为蛇形模型:数字1出现在第1行,数字2,3出现在第2行;数字6,5,4(从左到右)出现在第3行;数字7,8,9,10出现在第4行,以此类推,第21行从左到右的第4个数字应是228.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\sqrt{2}sinωxcosωx+\sqrt{2}{cos^2}ωx-\frac{{\sqrt{2}}}{2}({ω>0})$,若x=$\frac{π}{4}$是函数f(x)的一条对称轴,则实数ω的值可以是(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:
x12345
y7.06.55.53.82.2
(Ⅰ)求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(保留两位小数)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案