精英家教网 > 高中数学 > 题目详情
设x,y满足约束条件
x+2y≤4
x-y≤1
x+2≥0
,则目标函数z=3x-y的最大值为
 
考点:简单线性规划
专题:数形结合,不等式的解法及应用
分析:由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.
解答: 解:由约束条件
x+2y≤4
x-y≤1
x+2≥0
作出可行域如图,

联立
x+2y=4
x-y=1
,解得:B(2,1),
化z=3x-y为y=3x-z,
由图可知,当直线y=3x-z过B(2,1)时z有最大值为3×2-1=7.
故答案为:7.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲和乙两人约定凌晨在九龙广场喷水池旁见面,约定谁先到后必须等10分钟,这时若另一人还没有来就可以离开.假设甲在0点到1点内到达,且何时到达是等可能的,
(1)如果乙是0:40分到达,求他们能会面的概率;
(2)如果乙在0点到1点内到达,且何时到达是等可能的,求他们能会面的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若无穷等比数列{an}满足:
lim
n→∞
(a1+a2+…+an)=4
,则首项a1的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P1、P2分别是P关于x轴、y轴的对称点,直线OP的斜率为
3
4
,O为坐标原点,则直线OP1、OP2的斜率分别为
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-cosx在区间[a,b]上是减函数,且f(a)=
1
3
,f(b)=-
1
3
,则sin(
π
2
+
a+b
2
)的值为(  )
A、0
B、-
3
2
C、
1
6
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x-1),g(x)=loga(6-2x)(a>0且a≠1).
(1)求函数φ(x)=f(x)+g(x)的定义域;
(2)试确定不等式f(x)≤g(x)中x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=
an+3
2an-4
,求通项an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a,b,c满足a>b>c,a+b+c=0(a,b,c∈R).
(1)求证:两函数图象交于不同的两点A、B.
(2)求证:方程f(x)-g(x)=0的两根均小于2.
(3)求线段AB在x轴上的射影A1B1的长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简
tan(π-α)cos(2π-α)sin(-α+
2
)
cos(-α-π)sin(-π-α)


(2)证明:
1+2sinθcosθ
cos2θ-sin2θ
=
1+tanθ
1-tanθ

查看答案和解析>>

同步练习册答案