【题目】如图,椭圆C:
(
),
,
分别是椭圆C的左,右焦点,点D在椭圆上,且
,
,
的面积为
.
![]()
(1)求椭圆C的方程;
(2)过
的直线l与椭圆C交于M,N两点,在x轴上是否存在点A,使
为常数?若存在,求出点A的坐标和这个常数;若不存在,请说明理由
【答案】(1)
(2)
,常数为
.
【解析】
(1)根据线段比例关系及面积,集合椭圆中
关系,可得方程组,解方程即可求得椭圆的标准方程.
(2)假设存在点
满足
为常数.当斜率存在时,设出直线方程,并联立椭圆方程,由韦达定理表示出
,进而表示出
.根据平面向量数量积的坐标运算,结合系数比相同时为常数,即可求得
的值,进而确定
的值;当斜率不存在时,易得两个交点坐标,即可确定取
的值时
的值是否与斜率存在时的一致.
(1)椭圆C:
(
),
,
分别是椭圆C的左,右焦点,点
在椭圆上,且
,
.
则点
的坐标为
,(
).代入椭圆方程可得
,
解得
.
又因为
,
的面积为
.
所以
,解得![]()
所以椭圆的标准方程为
.
(2)假设在
轴上存在点A,使
为常数,设
.
当直线的斜率存在时,直线
过
,设
.
.
则
,化简可得
,
所以
.
所以
,
则![]()
![]()
,
因为
为常数,
所以
,解得
,
此时![]()
当直线
的斜率不存在时,直线
与椭圆的两个交点坐标分别为
.
则![]()
所以![]()
![]()
当
时,
.
综上可知,在
轴上存在点
,使得
为常数,该常数为
.
科目:高中数学 来源: 题型:
【题目】袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为
,第二次取出的小球标号为
.
(1) 记事件
表示“
”, 求事件
的概率;
(2) 在区间
内任取2个实数
, 记
的最大值为
,求事件“
”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线
:
,(
为参数),将曲线
上的所有点的横坐标缩短为原来的
,纵坐标缩短为原来的
后得到曲线
,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
。
(1)求曲线
的极坐标方程和直线l的直角坐标方程;
(2)设直线l与曲线
交于不同的两点A,B,点M为抛物线
的焦点,求
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是直角梯形,侧棱
底面
,
垂直于
和
,
为棱
上的点,
,
.
![]()
(1)若
为棱
的中点,求证:
//平面
;
(2)当
时,求平面
与平面
所成的锐二面角的余弦值;
(3)在第(2)问条件下,设点
是线段
上的动点,
与平面
所成的角为
,求当
取最大值时点
的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
人数 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件数 | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
(1)在答题卡给定的坐标系中画出表中数据的散点图,并由散点图判断销售件数
与进店人数
是否线性相关?(给出判断即可,不必说明理由);
(2)建立
关于
的回归方程(系数精确到0.01),预测进店人数为80时,商品销售的件数(结果保留整数).
(参考数据:
,
,
,
,
,
)
参考公式:
,
,其中
,
为数据
的平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱柱
中,侧棱
底面
,
平面
,
,
,
,
,
为棱
的中点.
![]()
(1)证明:
;
(2)求二面角
的平面角的正弦值;
(3)设点
在线段
上,且直线
与平面
所成角的正弦值为
,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图放置的边长为1的正方形
沿
轴滚动,点
恰好经过原点.设顶点
的轨迹方程是
,则对函数
有下列判断:①函数
是偶函数;②对任意的
,都有
;③函数
在区间
上单调递减;④函数
的值域是
;⑤
.其中判断正确的序号是__________.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com