分析 (1)直接利用函数的奇偶性定义求证即可;
(2)直接利用函数单调性的定义求证即可;
解答 (1)f(x)的定义域为(-∞,0)∪(0,+∞),它关于原点对称,
且$f(-x)=\frac{1}{{{{(-x)}^2}}}=\frac{1}{x^2}=f(x)$,
∴f(x)为偶函数.
(2)任取x1,x2∈(-∞,0),且x1<x2,
则$f({x_1})-f({x_2})=\frac{1}{x_1^2}-\frac{1}{x_2^2}$=$\frac{{({x_2}+{x_1})({x_2}-{x_1})}}{{{{({x_2}{x_1})}^2}}}$,
∵x1<x2<0,∴x1+x2<0,x2-x1>0,${({x_2}{x_1})^2}>0$,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在(-∞,0)上为增函数.
点评 本题主要考查了函数的单调性定义证明,以及函数奇偶性定义证明,属中等题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | $-2\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 以直角三角形一边为轴旋转所得的旋转体是圆锥 | |
| B. | 用一个平面去截圆锥,得到一个圆锥和一个圆台 | |
| C. | 正棱锥的棱长都相等 | |
| D. | 棱柱的侧棱都相等,侧面是平行四边形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{11}$ | B. | $\frac{8}{11}$ | C. | $\frac{9}{11}$ | D. | $\frac{10}{11}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com