精英家教网 > 高中数学 > 题目详情
3.如图,已知焦点在y轴上的椭圆E的中心是原点O,离心率为$\frac{{\sqrt{3}}}{2}$,以椭圆E的短轴的两端点和两焦点所围成的四边形的周长为8,直线l:y=kx+m与y轴交于点M,与椭圆E交于不同两点A,B.
(1)求椭圆E的标准方程;
(2)若$\overrightarrow{AM}=-3\overrightarrow{BM}$,求m2的取值范围.

分析 (1)设椭圆的标准方程为:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$(a>b>0),由题意可知:4a=8,即a=2,由离心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,则c=$\sqrt{3}$,则b2=a2-c2=1,即可求得椭圆的标准方程;
(2)求出P(0,m),设A(x1,kx1+m),B(x2,kx2+m),通过直线与椭圆方程联立,利用△>0,推出不等式,k2-m2+4>0.由$\overrightarrow{AM}=-3\overrightarrow{BM}$,得到x1=-3x2,由3(x1+x22+4x1x2=0,求得m2k2+m2-k2-4=0,则k2=$\frac{4-{m}^{2}}{{m}^{2}-1}$,然后求解m2的取值范围.

解答 解:(1)由椭圆E焦点在y轴上,设椭圆的标准方程为:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$(a>b>0),
由椭圆E的短轴的两端点和两焦点所围成的四边形的周长为4a,
∴4a=8,即a=2,
离心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,则c=$\sqrt{3}$,
由b2=a2-c2=1.…(2分)
∴椭圆E的标准方程为$\frac{{y}^{2}}{4}+{x}^{2}=1$;…(4分)
(2)根据已知得P(0,m),设A(x1,kx1+m),B(x2,kx2+m),
由$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,整理得(k2+4)x2+2mkx+m2-4=0,
由已知得△=4m2k2-4(k2+4)(m2-4)>0,
即k2-m2+4>0.
由韦达定理可知:x1+x2=-$\frac{2km}{4+{k}^{2}}$,x1x2=$\frac{{m}^{2}-4}{4+{k}^{2}}$,②
由$\overrightarrow{AM}=-3\overrightarrow{BM}$,则-x1=3x2,即x1=-3x2
由3(x1+x22+4x1x2=0
∴$\frac{12{k}^{2}{m}^{2}}{({k}^{2}+4)^{2}}$+$\frac{4({m}^{2}-4)}{{k}^{2}+4}$=0,即m2k2+m2-k2-4=0.
当m2=1时,m2k2+m2-k2-4=0不成立.
∴k2=$\frac{4-{m}^{2}}{{m}^{2}-1}$,
∵k2-m2+4>0,
∴$\frac{4-{m}^{2}}{{m}^{2}-1}$-m2+4>0,即$\frac{(4-{m}^{2}){m}^{2}}{{m}^{2}-1}$>0.
∴1<m2<4,
∴m2的取值范围为(1,4)

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查分析问题解决问题的能力,转化思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列四组中的f(x),g(x),表示同一个函数的是(  )
A.f(x)=1,g(x)=x0B.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1
C.f(x)=x2,g(x)=($\sqrt{x}$)4D.f(x)=x3,f(t)=t3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在多面体ABCDEF中,四边形ABCD为正方形,EF∥AB,EF⊥EA,AB=2EF=2,∠AED=90°,AE=ED,H为AD的中点.
(1)求证:EH⊥平面ABCD;
(2)在线段BC上是否存在一点P,使得二面角B-FD-P的大小为$\frac{π}{3}$?若存在,求出BP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}满足a1=2,an+1=2an-n+1,n∈N*
(1)证明:数列{an-n}为等比数列,并求{an}的通项公式;
(2)若数列bn=$\frac{1}{{n({a_n}-{2^{n-1}}+1)}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知{an}是首项为1的等比数列,Sn是其前n项和,若S4=5S2,则log4a3的值为(  )
A.1B.2C.0或1D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{(1-x)^{3},x<1}\\{(x-1)^{3},x≥1}\end{array}\right.$,若关于x的不等式f(x2-2x+2)<f(1-a2x2)的解集中有且仅有三个整数,则实数a的取值范围是(  )
A.[-$\frac{3}{4}$,-$\frac{2}{3}$)∪($\frac{2}{3}$,$\frac{3}{4}$]B.($\frac{2}{3}$,$\frac{3}{4}$]C.[-$\frac{3}{4}$,-$\frac{1}{2}$)∪($\frac{1}{2}$,$\frac{3}{4}$]D.[-$\frac{4}{5}$,-$\frac{3}{4}$)∪($\frac{3}{4}$,$\frac{4}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{x^2}$.
(1)判断并用定义证明函数的奇偶性;
(2)判断并用定义证明函数在(-∞,0)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知g(x)=sin2x的图象,要得到f(x)=sin(2x-$\frac{π}{4}$),只需将g(x)的图象(  )
A.向右平移$\frac{π}{8}$个单位B.向左平移$\frac{π}{8}$个单位
C.向右平移$\frac{π}{4}$个单位D.向左平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U={x∈R|x>0},函数f(x)=$\sqrt{1-lnx}$的定义域为A,则∁UA为(  )
A.(e,+∞)B.[e,+∞)C.(0,e)D.(0,e]

查看答案和解析>>

同步练习册答案