精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{(1-x)^{3},x<1}\\{(x-1)^{3},x≥1}\end{array}\right.$,若关于x的不等式f(x2-2x+2)<f(1-a2x2)的解集中有且仅有三个整数,则实数a的取值范围是(  )
A.[-$\frac{3}{4}$,-$\frac{2}{3}$)∪($\frac{2}{3}$,$\frac{3}{4}$]B.($\frac{2}{3}$,$\frac{3}{4}$]C.[-$\frac{3}{4}$,-$\frac{1}{2}$)∪($\frac{1}{2}$,$\frac{3}{4}$]D.[-$\frac{4}{5}$,-$\frac{3}{4}$)∪($\frac{3}{4}$,$\frac{4}{5}$]

分析 函数f(x)的图象关于直线x=1对称,且当x>1时,函数递增,所以不等式f(x2-2x+2)<f(1-a2x2)可化为:(a2-1)x2+2x-1>0,分a<0和a>0两种情况,可得满足条件的实数a的取值范围.

解答 解:由解析式得:函数f(x)的图象关于直线x=1对称,且当x>1时,函数递增,
所以不等式f(x2-2x+2)<f(1-a2x2)可化为:
|x2-2x+2-1|<|1-a2x2-1|,
即x2-2x+1<a2x2,即(a2-1)x2+2x-1>0,
若原不等式的解集中有且仅有三个整数,
则a<0时,($\frac{1}{1-a}$,$\frac{1}{1+a}$)有且仅有三个整数,解得:a∈[-$\frac{3}{4}$,-$\frac{2}{3}$),
a>0时,($\frac{1}{1+a}$,$\frac{1}{1-a}$)有且仅有三个整数,解得:a∈($\frac{2}{3}$,$\frac{3}{4}$],
综上可得:x∈[-$\frac{3}{4}$,-$\frac{2}{3}$)∪($\frac{2}{3}$,$\frac{3}{4}$],
故选:A

点评 本题考查了分段函数的应用,函数的对称性,一元二次不等式的解法,考查分类讨论的思想,转化思想是中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设3f(x)-f($\frac{1}{x}$)=$\frac{1}{x}$,求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则不等式f(x)>0的解集是(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=m-$\frac{2}{{2}^{x}+1}$,(m∈R).
(1)试判断f(x)的单调性,并证明你的结论;
(2)是否存在实数m使函数f(x)为奇函数?
(3)对于(2)中的函数f(x),若f(t+1)+f(t)≥0,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知焦点在y轴上的椭圆E的中心是原点O,离心率为$\frac{{\sqrt{3}}}{2}$,以椭圆E的短轴的两端点和两焦点所围成的四边形的周长为8,直线l:y=kx+m与y轴交于点M,与椭圆E交于不同两点A,B.
(1)求椭圆E的标准方程;
(2)若$\overrightarrow{AM}=-3\overrightarrow{BM}$,求m2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)是定义在R上的奇函数,当x≤0时,f(x)=(x+2)e-x-2(其中e是自然对数的底数,e=2.71828…).
(Ⅰ) 当x>0时,求f(x)的解析式;
(Ⅱ) 若x∈[0,2]时,方程f(x)=m有实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数y=$\sqrt{a{x}^{2}-2ax+3}$定义域为实数集R,则实数a的取值范围是[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知抛物线y2=6x,定点A(2,3),F为焦点,P为抛物线上的动点,则|PF|+|PA|的最小值为(  )
A.5B.4.5C.3.5D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=AC=2$\sqrt{2}$,BC=BB1=4,D、E分别为BC,BB1的中点.
(Ⅰ)求证:CE⊥平面AC1D;
(Ⅱ)求直线AB与平面AC1D所成角的正弦值.

查看答案和解析>>

同步练习册答案