精英家教网 > 高中数学 > 题目详情
19.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则不等式f(x)>0的解集是(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(1,+∞)D.(-∞,-1)

分析 偶函数图象关于y轴对称,所以只需求出[0,+∞]内的范围,再根据对称性写出解集.

解答 解:当x∈[0,+∞]时f(x)>0则x>1.
又∵偶函数关于y轴对称,
∴f(x)>0的解集为{x|x<-1或x>1},
故选B.

点评 本题考查了偶函数的图象特征.在解决函数性质问题时要善于数形结合的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在△ABC中,a,b,c分别为角A,B,C所对的边,S为△ABC的面积,且S=$\frac{{\sqrt{3}}}{4}$(a2-b2-c2).
(I)求角A的大小;
(II)若a=2$\sqrt{7}$,b>c,D为BC的中点,且AD=$\sqrt{3}$,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设命题p:函数$f(x)=lg(a{x^2}-x+\frac{a}{16})$的定义域为R;命题q:3x-9x<a对一切的实数x恒成立,如果命题“p且q”为假命题,则实数a的取值范围是(  )
A.a<2B.a≤2C.a≥2D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下面命题中假命题是(  )
A.?x∈R,3x>0
B.?α,β∈R,使sin(α+β)=sinα+sinβ
C.命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”
D.?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是幂函数,且在(0,+∞)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在多面体ABCDEF中,四边形ABCD为正方形,EF∥AB,EF⊥EA,AB=2EF=2,∠AED=90°,AE=ED,H为AD的中点.
(1)求证:EH⊥平面ABCD;
(2)在线段BC上是否存在一点P,使得二面角B-FD-P的大小为$\frac{π}{3}$?若存在,求出BP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若不等式x2-2ax+a>0,对x∈R恒成立,则实数a取值范围为(  )
A.{a|1<a<2}B.{a|-2<a<1}C.{a|0<a<2}D.{a|0<a<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}满足a1=2,an+1=2an-n+1,n∈N*
(1)证明:数列{an-n}为等比数列,并求{an}的通项公式;
(2)若数列bn=$\frac{1}{{n({a_n}-{2^{n-1}}+1)}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{(1-x)^{3},x<1}\\{(x-1)^{3},x≥1}\end{array}\right.$,若关于x的不等式f(x2-2x+2)<f(1-a2x2)的解集中有且仅有三个整数,则实数a的取值范围是(  )
A.[-$\frac{3}{4}$,-$\frac{2}{3}$)∪($\frac{2}{3}$,$\frac{3}{4}$]B.($\frac{2}{3}$,$\frac{3}{4}$]C.[-$\frac{3}{4}$,-$\frac{1}{2}$)∪($\frac{1}{2}$,$\frac{3}{4}$]D.[-$\frac{4}{5}$,-$\frac{3}{4}$)∪($\frac{3}{4}$,$\frac{4}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3+ax2+bx+c在$x=-\frac{2}{3}$与x=1时都取得极值.
(Ⅰ) 求a,b的值;
(Ⅱ) 函数f(x)的单调区间及极值.

查看答案和解析>>

同步练习册答案