精英家教网 > 高中数学 > 题目详情
10.设命题p:函数$f(x)=lg(a{x^2}-x+\frac{a}{16})$的定义域为R;命题q:3x-9x<a对一切的实数x恒成立,如果命题“p且q”为假命题,则实数a的取值范围是(  )
A.a<2B.a≤2C.a≥2D.a>2

分析 分别求出命题p,命题q为真时,实数a的取值范围,再求出“p且q”为真命题时,实数a的取值范围,进而可得答案.

解答 解:若函数$f(x)=lg(a{x^2}-x+\frac{a}{16})$的定义域为R,
故$a{x}^{2}-x+\frac{a}{16}>0$恒成立,
故$\left\{\begin{array}{l}a>0\\△=1-\frac{1}{4}{a}^{2}<0\end{array}\right.$,
解得:a>2,
故命题p:a>2,
若3x-9x<a对一切的实数x恒成立,
则t-t2<a对一切的正实数t恒成立,
故a>$\frac{1}{4}$,
故命题q:a>$\frac{1}{4}$,
若命题“p且q”为真命题,则a>2,
故命题“p且q”为假命题时,a≤2,
故选:B

点评 本题以命题的真假判断与应用为载体,考查了恒成立问题,指数函数对数函数的图象和性质,转化思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在极坐标系中,已知曲线C:ρ=2cosθ,将曲线C上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C1,又已知直线l:$\left\{\begin{array}{l}x=tcos\frac{π}{3}\\ y=\sqrt{3}+tsin\frac{π}{3}\end{array}$(t是参数),且直线l与曲线C1交于A,B两点.
(1)求曲线C1的直角坐标方程,并说明它是什么曲线;
(2)设定点P(0,$\sqrt{3}$),求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\frac{1}{x+2}$(x≠-2),h(x)=x2+1.
(1)求f(2),h(1)的值;
(2)求f[h(2)]的值;
(3)求f(x),h(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设3f(x)-f($\frac{1}{x}$)=$\frac{1}{x}$,求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知g(x)=mx,G(x)=lnx.
(1)设f(x)=$\frac{G(x)}{x}$+1,求f(x)在点(1,f(1))处的切线方程及f(x)的单调区间;
(2)若G(x)+x+2≤g(x)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知下列命题:
(1)“cosx<0”是“tanx<0”的充分不必要条件;
(2)命题“存在x∈Z,4x+1是奇数”的否定是“任意x∈Z,4x+1不是奇数”;
(3)已知a,b,c∈R,若ac2>bc2,则a>b.
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某地区山体大面积滑坡,政府准备调运一批赈灾物资共装26辆车,从某市出发以v(km/h)的速度匀速直达灾区,如果两地公路长400km,且为了防止山体再次坍塌,每两辆车的间距保持在($\frac{v}{20}$)2km.(车长忽略不计)设物资全部运抵灾区的时间为y小时,请建立y关于每车平均时速v(km/h)的函数关系式,并求出车辆速度为多少千米/小时,物资能最快送到灾区?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则不等式f(x)>0的解集是(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数y=$\sqrt{a{x}^{2}-2ax+3}$定义域为实数集R,则实数a的取值范围是[0,3].

查看答案和解析>>

同步练习册答案