精英家教网 > 高中数学 > 题目详情
6.函数f(x)=$\sqrt{1-2log6x}$的定义域为(0,$\sqrt{6}$].

分析 由根式内部的代数式大于等于0,然后求解对数不等式得答案.

解答 解:由1-2log6x≥0,得$lo{g}_{6}x≤\frac{1}{2}=lo{g}_{6}\sqrt{6}$.
即0$<x≤\sqrt{6}$.
∴函数f(x)=$\sqrt{1-lo{g}_{6}x}$的定义域为(0,$\sqrt{6}$].
故答案为:(0,$\sqrt{6}$].

点评 本题考查函数的定义域及其求法,考查了对数不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设变量x、y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{y≥3x-6}\end{array}\right.$,则$\frac{y+1}{x}$最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow a$=(k,1),$\overrightarrow b$=(1,0),$\overrightarrow c$=(-2,k).若$(2\overrightarrow a$+$\overrightarrow b)⊥\overrightarrow c$⊥$\overrightarrow{c}$,则k=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在多面体ABCDEF中,四边形ABCD为正方形,EF∥AB,EF⊥EA,AB=2EF=2,∠AED=90°,AE=ED,H为AD的中点.
(1)求证:EH⊥平面ABCD;
(2)在线段BC上是否存在一点P,使得二面角B-FD-P的大小为$\frac{π}{3}$?若存在,求出BP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数y=f(x)满足:f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2015)的值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}满足a1=2,an+1=2an-n+1,n∈N*
(1)证明:数列{an-n}为等比数列,并求{an}的通项公式;
(2)若数列bn=$\frac{1}{{n({a_n}-{2^{n-1}}+1)}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知{an}是首项为1的等比数列,Sn是其前n项和,若S4=5S2,则log4a3的值为(  )
A.1B.2C.0或1D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{x^2}$.
(1)判断并用定义证明函数的奇偶性;
(2)判断并用定义证明函数在(-∞,0)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)是定义在R上的减函数,对任意m,n∈R恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)求f(0);
(2)解不等式f(x)•f(2x-x2)>1.

查看答案和解析>>

同步练习册答案