精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-
1
2
ax2(a∈R,a≠0)

(I)求函数f(x)的单调区间;
(II)已知点A(1,-
1
2
a),设B(x1y1)(x1>1)是曲线C:y=f(x)
图角上的点,曲线C上是否存在点M(x0,y0)满足:①x0=
1+x1
2
;②曲线C在点M处的切线平行于直线AB?请说明理由.
分析:(I)f(x)的定义域是(0,+∞),对f(x)进行求导,利用导数研究函数f(x)的单调区间;
(II)假设存在满足条件的点M,根据A在曲线C上,求出直线AB的斜率,根据导数与斜率的关系KAB=f′(x0),对其进行化简,从而进行判断;
解答:解:(I)f(x)的定义域是(0,+∞),
f′(x)=
1
x
-ax=
1-ax2
x

①当a<0时,f′(x)>0,f(x)在(0,+∞)上单调递减,
当a>0时,由f′(x)>0和x>0得0<x<
a
a

f(x)在(0,
a
a
)内单调递增,
由f′(x)<0和x>0得x>
a
a
,f(x)在(
a
a
,+∞)内单调递减,
综上所述:当a>0时,f(x)的单调增区间是(0,
a
a
),单调递减区间是(
a
a
,+∞);
(II)假设存在满足条件的点M,
∵A在曲线C上,∴KAB=
y1+
1
2
a
x1-1
=
lnx1-
1
2
ax
2
1
+
1
2
a
x1-1

f′(x)=
1
x
-ax,
∴f′(x0)=f′(
x1+1
2
)=
2
x1+1
-a•
x1+1
2
,由已知KAB=f′(x0),
lnx1-
1
2
ax
2
1
+
1
2
a
x1-a
=
2
x1+1
-a•
x1+1
2

化简整理可得lnx1=
2(x1-1)
x1+1
=2-
4
x1+1

即lnx1+
4
x1+1
>2
∴lnx1+
4
x1+1
>2
∴lnx1=2-
4
x1+1
不成立,即满足条件的点M是不存在的;
点评:此题主要考查利用导数研究函数的单调性,以及导数与斜率的关系,第二问是存在性问题,难度有些大,此题是一道中档题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案