精英家教网 > 高中数学 > 题目详情
曲线
x2
4
+
y2
3
=1
与曲线
x2
4-k
+
y2
3-k
=1
(k<3)的(  )
A、长轴长相等B、短轴长相等
C、离心率相等D、焦距相等
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:分别确定曲线的几何量,求出相应的性质,即可得到结论.
解答: 解:由于曲线
x2
4
+
y2
3
=1

则a2=4,b2=3,c2=a2-b2=1,焦点在x轴上,
由于曲线
x2
4-k
+
y2
3-k
=1
(k<3),
则a′2=4-k,b′2=3-k,c′2=a′2-b′2=1,焦点在x轴上,
∴两曲线焦距相等.
故选:D.
点评:本题考查椭圆、双曲线的几何性质,考查学生的计算能力,确定几何量是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),如图是这次调查统计分析得到的频率分布表和频率分布直方图(如图所示).
分组 频数 频率
一组 0≤t<5 0 0
二组 5≤t<10 10 0.10
三组 10≤t<15 10
四组 15≤t<20 0.50
五组 20≤t≤25 30 0.30
合计 100 1.00
解答下列问题:
(1)这次抽样的样本容量是多少?
(2)在表中填写出缺失的数据并补全频率分布直方图;
(3)求旅客购票用时的平均数?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,则动圆x2+y2+4mx-2my+6m2-4=0的圆心的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图中三个直角三角形是一个体积为20的几何体的三视图,则h=(  )
A、6B、8C、4D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
是两个非零向量,则下列结论不正确的是(  )
A、|
a
+
b
|>|
a
-
b
|
B、若
a
=
b
,则|
a
|=|
b
|
C、若存在一个实数k满足
a
=k
b
,则
a
b
共线
D、若
a
b
为同方向的向量,则|
a
+
b
|=|
a
|+|
b
|

查看答案和解析>>

科目:高中数学 来源: 题型:

2cos10°
cos20°
-tan20°
=(  )
A、1
B、
3
-1
2
C、
3
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

一枚硬币,连掷两次,至少有一次正面朝上的概率为(  )
A、
1
2
B、
1
3
C、
1
4
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax2+bx+c(a≠0),f′(x)=2x+2.且方程f(x)=0有两个相等的实根.
(1)求y=f(x)的表达式;
(2)求y=f(x)的图象与两坐标轴所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的方程2x+2-4x-b=0.
(Ⅰ) 如果b=1,求实数x的值;
(Ⅱ) 如果2x≤16且log2x≥0,求实数b的取值范围.

查看答案和解析>>

同步练习册答案