精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=x2+2ax+3,x∈[-4,6],
(1)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;
(2)当a=-1时,求f(|x|)的单调区间.

分析 (1)利用二次函数的开口方向与对称轴,结合函数的单调性列出不等式求解即可.
(2)利用a=-1化简函数的解析式,然后求解函数的单调区间即可.

解答 解:(1)函数f(x)=x2+2ax+3,开口向上,对称轴为:x=-a,
由y=f(x)在区间[-4,6]上是单调函数,可得-a≤-4或-a≥6,
∴a≤-6或a≥4.
(2)当a=-1时,f(|x|)=x2-2|x|+3=$\left\{\begin{array}{l}{(x-1)^{2}+2,x≥0}\\{(x+1)^{2}+2,x<0}\end{array}\right.$,
结合函数图象分析知,增区间为[-1,0],[1,6]减区间为[-4,-1),(0,1].

点评 本题考查二次函数的性质的应用,考查数形结合以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知集合M={x|x>2},N={x|1<x<3},则N∩∁RM=(  )
A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,已知点P在曲线Γ:y=$\sqrt{1-\frac{{x}^{2}}{4}}$(x≥0)上,曲线Γ与x轴相交于点B,与y轴相交于点C,点D(2,1)和点E(1,0)满足$\overrightarrow{OD}$=λ$\overrightarrow{CE}$+μ$\overrightarrow{OP}$(λ,μ∈R),则λ+μ的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某公司开发一心产品有甲乙两种型号,现发布对这两种型号的产品进行质量检测,从它们的检测数据中随机抽取8次(数值越大产品质量越好),记录如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5
(1)先要从甲乙中选一种型号产品投入生产,从统计学的角度,你认为生产哪种型号的产品合适?简单说明理由;
(2)若将频率视为概率,对产品乙今后的三次检测数据进行预测,记这三次数据中不低于8.5分的次数为ξ,求ξ的分布列及数学期望ξ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设实数x,y满足(x+3)2+(y-4)2=4,则$\sqrt{{x}^{2}+{y}^{2}}$的最大值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.复数 $\frac{3i}{1+2i}$的虚部是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A、B、C的对边分别为a、b、c,且满足b2=ac,cosB=$\frac{3}{4}$.
(1)求$\frac{1}{tanA}$+$\frac{1}{tanC}$的值;
(2)设$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3}{2}$,求三边a、b、c的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将乘积(a1+a2+a3+a4)(b1+b2)(c1+a2+a3)展开式多项式后的项数是(  )
A.4+2+3B.4×2×3C.5+3+4D.5×3×4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的定义域
(1)f(x)=$\sqrt{x-1}$•$\sqrt{2-x}$
(2)$f(x)=\frac{{\sqrt{x-1}}}{2x-9}$.

查看答案和解析>>

同步练习册答案