精英家教网 > 高中数学 > 题目详情
4.已知集合M={x|x>2},N={x|1<x<3},则N∩∁RM=(  )
A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

分析 求出∁RM,再由交集的定义,即可得到所求集合.

解答 解:集合M={x|x>2},N={x|1<x<3},
则N∩∁RM={x|1<x<3}∩{x|x≤2}
={x|1<x≤2},
故选:C.

点评 本题考查集合的运算,主要是交集和补集的运算,运用定义法是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知正方形ABCD的边长为2,E是BC的中点,以点C为圆心,CE长为半径作圆,点P是该圆上的任一点,则$\overrightarrow{AP}•\overrightarrow{DE}$的取值范围是(  )
A.$[0,2+\sqrt{6}]$B.$[2-\sqrt{6},2+\sqrt{6}]$C.$[0,2+\sqrt{5}]$D.$[2-\sqrt{5},2+\sqrt{5}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若圆C与y轴相切于点P(0,1),与x轴的正半轴交于A,B两点,且|AB|=2,则圆C的标准方程是(  )
A.${(x+\sqrt{2})^2}+{(y+1)^2}=2$B.${(x+1)^2}+{(y+\sqrt{2})^2}=2$C.${(x-\sqrt{2})^2}+{(y-1)^2}=2$D.${(x-1)^2}+{(y-\sqrt{2})^2}=2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在区间[-4,1]上随机地取一个实数x,若x满足|x|<a的概率为$\frac{4}{5}$,则实数a的值为(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=$\frac{2-{i}^{2017}}{1+i}$,则z的共轭复数在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设非零平面向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{c}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=8,AD=4,AB=2DC=4$\sqrt{5}$.
(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等比数列{an}满足a1=2,a2=4(a3-a4),数列{bn}满足bn=3-2log2an
(1)求数列{an},{bn}的通项公式;
(2)令cn=$\frac{{b}_{n}}{{a}_{n}}$,求数列{cn}的前n项和Sn
(3)若λ>0,求对所有的正整数n都有2λ2-kλ+2>a2nbn成立的k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+2ax+3,x∈[-4,6],
(1)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;
(2)当a=-1时,求f(|x|)的单调区间.

查看答案和解析>>

同步练习册答案