精英家教网 > 高中数学 > 题目详情
14.已知正方形ABCD的边长为2,E是BC的中点,以点C为圆心,CE长为半径作圆,点P是该圆上的任一点,则$\overrightarrow{AP}•\overrightarrow{DE}$的取值范围是(  )
A.$[0,2+\sqrt{6}]$B.$[2-\sqrt{6},2+\sqrt{6}]$C.$[0,2+\sqrt{5}]$D.$[2-\sqrt{5},2+\sqrt{5}]$

分析 由题意,建立平面直角坐标系,设出各点坐标,利用数量积的坐标运算,得到P的关系式,结合点在圆上得到所求范围.

解答 解:由题意,建立平面直角坐标系,如图则A(0,0),C(2,2),D(0,2),E(2,1),P(x,y),则(x-2)2+(y-2)2=1,
$\overrightarrow{AP}$=(x,y),$\overrightarrow{DE}$=(2,-1),
所以$\overrightarrow{AP}•\overrightarrow{DE}$=2x-y=z,则y=2x-z,当此直线与圆相切时使得在y轴的截距取得最值,所以$\frac{|2-z|}{\sqrt{5}}=1$,解得z=2$±\sqrt{5}$,
所以$\overrightarrow{AP}•\overrightarrow{DE}$的取值范围是[2-$\sqrt{5}$,2+$\sqrt{5}$];
故选D.

点评 本题考查了向量的坐标运算、点与圆的位置关系,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某班A,B,C,D,E5个同学先坐好,然后玩坐座位的游戏,当坐回自己原来的位置上称为“坐对”,否则称作“坐错“.
(1)求只有两个人“坐对”的概率;
(2)若每“坐对”一个人得1分,“坐错“得-1分,设5人得分和的绝对值为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知R是实数集,集合 A={x|22x+1≥16},B={x|(x-1)(x-3)<0,则(∁RA)∩B=(  )
A.(1,2)B.[1,2]C.(1,3)D.(1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的定义域为R,当x>0时,f(x)<2,对任意的x,y∈R,f(x)+f(y)=f(x+y)+2成立,若数列{an}满足a1=f(0),且f(an+1)=f($\frac{{a}_{n}}{{a}_{n}+3}$),n∈N*,则a2017的值为(  )
A.2B.$\frac{6}{2×{3}^{2016}-1}$C.$\frac{2}{2×{3}^{2016}-1}$D.$\frac{2}{2×{3}^{2015}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一次数学考试后,某老师从自己所带的两个班级中各抽取6人,记录他们的考试成绩,得到如图所示的茎叶图.已知甲班6名同学成绩的平均数为82,乙班6名同学成绩的中位数为77,则x-y=(  )
A.3B.-3C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=x-{e^{\frac{x}{a}}}$(a>0),且y=f(x)的图象在x=0处的切线l与曲y=ex相切,符合情况的切线(  )
A.有0条B.有1条C.有2条D.有3条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx-$\frac{1}{2}$x2+x
(1)设G(x)=f(x)+lnx,求G(x)的单调递增区间;
(2)证明:k<1时,存在x0>1,当x∈(1,x0)时,恒有f(x)-$\frac{1}{2}$>k(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.电影院一排10个位置,甲、乙、丙三人去看电影,要求他们坐在同一排,那么他们每人左右两边都有空位且甲坐在中间的坐法有40种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合M={x|x>2},N={x|1<x<3},则N∩∁RM=(  )
A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

同步练习册答案