精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=lnx-$\frac{1}{2}$x2+x
(1)设G(x)=f(x)+lnx,求G(x)的单调递增区间;
(2)证明:k<1时,存在x0>1,当x∈(1,x0)时,恒有f(x)-$\frac{1}{2}$>k(x-1)

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;
(2)令F(x)=f(x)-$\frac{1}{2}$-k(x-1),求出函数的导数,求出函数的单调区间,从而证明结论即可.

解答 解:(1)由题意知,G(x)=f(x)+lnx=2lnx-$\frac{1}{2}$x2+x(x>0),
从而G′(x)=$\frac{2}{x}$-x+1=-$\frac{{x}^{2}-x-2}{x}$,
令G′(x)>0,得0<x<2,所以函数G(x)的单调递增区间为(0,2).
(2)当k<1时,令F(x)=f(x)-$\frac{1}{2}$-k(x-1)=lnx-$\frac{1}{2}$x2+x-$\frac{1}{2}$-k(x-1),(x>0),
则有F′(x)=$\frac{{-x}^{2}+(1-k)x+1}{x}$,
由F′(x)=0,得-x2+(1-k)x+1=0,解得x1=$\frac{1-k-\sqrt{{(1-k)}^{2}+4}}{2}$<0,x2=$\frac{1-k+\sqrt{{(1-k)}^{2}+4}}{2}$>1,
从而存在x0=x2>1,当x∈(1,x0)时,F′(x)>0,故F(x)在[1,x0)上单调递增,
从而当x∈(1,x0)时,F(x)>F(1)=0,即f(x)-$\frac{1}{2}$>k(x-1).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.平面直角坐标系xOy中,A(2,4),B(-1,2),C,D为动点,
(1)若C(3,1),求平行四边形ABCD的两条对角线的长度
(2)若C(a,b),且$\overrightarrow{CD}=(3,1)$,求$\overrightarrow{AC}•\overrightarrow{BD}$取得最小值时a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}中,a1=1,n≥2且n∈N*时,an=an-1+2n-1,依次计算a2,a3,a4后,猜想an的表达式是n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正方形ABCD的边长为2,E是BC的中点,以点C为圆心,CE长为半径作圆,点P是该圆上的任一点,则$\overrightarrow{AP}•\overrightarrow{DE}$的取值范围是(  )
A.$[0,2+\sqrt{6}]$B.$[2-\sqrt{6},2+\sqrt{6}]$C.$[0,2+\sqrt{5}]$D.$[2-\sqrt{5},2+\sqrt{5}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{1-x}{ax}+lnx$(其中a>0,e≈2.7).
(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(Ⅱ)当a=1时,求函数f(x)在$[\frac{1}{2},2]$上的最大值和最小值;
(Ⅲ)当a=1时,求证:对于任意大于1的正整数n,都有$lnn>\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查的数据,回答下列问题:
(1)试估算该校高三年级学生获得成绩为B的人数;
(2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?
(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为E的16名学生(其中男生4人,女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q,R分别是棱AB,AD,AA1的中点.以△PQR为底面作一个直三棱柱,使其另一个底面的三个顶点也都在此正方体的表面上.则这个直三棱柱的体积是$\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若圆C与y轴相切于点P(0,1),与x轴的正半轴交于A,B两点,且|AB|=2,则圆C的标准方程是(  )
A.${(x+\sqrt{2})^2}+{(y+1)^2}=2$B.${(x+1)^2}+{(y+\sqrt{2})^2}=2$C.${(x-\sqrt{2})^2}+{(y-1)^2}=2$D.${(x-1)^2}+{(y-\sqrt{2})^2}=2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=8,AD=4,AB=2DC=4$\sqrt{5}$.
(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

同步练习册答案